导航:首页 > 油性皮肤 > 催化剂亲油性好有什么优点

催化剂亲油性好有什么优点

发布时间:2022-04-27 00:38:13

‘壹’ 中国科学家发明新催化剂有什么好处

甲烷,有机化学中最难被转化的“顽固分子”。近日,上海科技大学物质科学与技术学院左智伟团队破解了这一难题,他们找到了一个低成本、高效率的催化剂组合,室温条件下,就可实现甲烷转化。这为甲烷转化为火箭推进剂燃料等高附加值化工产品提供了新方案,为我国高效利用特有稀土金属资源提供了新思路。相关研究成果日前发表在国际学术期刊《科学》上。

经过2年的前期工作积累、148天冲刺、2202次尝试和优化,左智伟团队最终找到一个高效催化剂组合——“铈基催化剂+醇催化剂”,即室温条件下,在三氯乙醇和稀土金属铈的协同催化下,完成甲烷转化。

左智伟介绍,该催化剂组合的最大优点是充分注重反应全过程的经济性。第一,反应条件只需室温,无需加热或冷凝;第二,三氯乙醇是常见的化工原料,作为催化剂获取很方便;第三,铈在我国稀土资源中占比接近50%,三氯化铈每吨价格约1.8万元,相当于传统铂、钯等贵金属催化剂价格的万分之一。

业内专家认为,该团队通过精巧的化学设计找到了催化“顽固分子”甲烷的新方法,为充分利用甲烷这一丰富的自然资源提供了解决方案,在医药、农业化学品和精细化工等行业中具有广泛应用前景。

本文来源:新华网

‘贰’ 环己酮制备己二酸

对微波促进杂多酸催化剂催化双氧水氧化环己酮制备己二酸的反应,考察了5种催化剂以及催化刺用量、反应原料、微波辐射功率和辐射时间对己二酸产率的影响。反应的优化条件为:3.5ml 环己酮、0.5g钨酸钠、0.5g 磺基水杨酸、15ml30%双氧水,在微波辐射功率为400W 下反应50min,其产率达72.37%。

己二酸的合成方法

1.1 以环己醇为原料合成己二酸

蒋永生等以聚乙二醇为相转移催化剂,在功率为50W的超声波作用下,采用30%的硝酸氧化环己醇合成己二酸。在反应过程中,废气中的NO2质量浓度明显减小,吸收处理完全,减少了NO2对大气环境的污染,己二酸的产率可达到46%。采用稀硝酸氧化环己醇未见有明显产品生成,表明聚乙二醇-300有较好的催化效果,当相转移催化剂的用量为2%时,具有很明显的催化效果。超声波及相转移催化剂在反应中均有重要作用,超声波作用时间为40min最佳。

马祖福等研究了以Na2WO4·2H2O为催化剂,磺基水杨酸为配体,采用清洁的双氧水为氧化剂催化氧化环己醇合成己二酸。采用正交设计的方法,综合考虑了催化剂与配体比例、催化剂用量及反应时间对反应的影响,以及各因素之间的相互作用对试验结果的影响,确立最佳反应条件。在反应初期形成过氧钨酸盐有机酸配位化合物,此活性中心不但具有载活性氧物种,而且具有一定的亲油性,使双相体系中发生在水相里的氧化和水解反应易于进行,催化效果较好。该反应操作简单,易于控制,且副产物只有水,是一种对环境友好的合成路线。

王向宇等研究了以精苯为原料制备环己烯的工艺条件。精苯在钉催化剂的存在下控制一定的温度、压力可以生成环己烯和环己烷。苯的转化率为40%-50%,其中环己烯的选择性为80%。再在高硅沸石催化剂存在下,控制一定的浓度、压力,可使环己烯水化生成环己醇。环己烯的转化率为10%,环己醇的选择性为99%。环己醇被硝酸氧化即可制得己二酸。采用该工艺生产己二酸具有产品质量好,纯度高的特点。此外,精苯在部分加氢时的反应条件温和,加氢及水合反应均在液相中进行,操作安全,不需采取专门的安全措施;副产品少,环己烷是唯一的副产品,它也可以作为化学试剂出售;加氢和水合反应过程不像传统工艺那样产生一元酸、二元酸、酯等,废液量少,环保投资低,具有环保优势;生产过程不存在设备结垢问题,不存在堵塞问题,因此事故少、维修少;能耗低,生产成本较低。

宫红等采用长链的伯铵或叔胺的硫酸盐为相转移催化剂,在Na2WO4·2H2O的作用下,以高锰酸钾氧化环己醇制备己二酸。反应条件温和,不产生有毒气体,反应速度快、产率较高。值得注意的是,若不用此相转移催化剂,且没有控制好高锰酸钾的滴加量,会造成冲料而引起爆炸。杨秀英用聚乙二醇(PEG-6000)、十二烷基硫酸钠(SDS)等作为环己醇液相氧化制取己二酸的相转移催化剂,实验发现SDS在高锰酸钾氧化环己醇的反应中具有较好的相转移催化作用,改变了反应体系的微环境,能够提高己二酸的收率。

Bfziat等使用廉价、清洁空气作为氧化剂,用碳作为载体,铂为催化剂C(Pt):5.4%,在液相体系中由环己醇合成了己二酸。在温度423 K、压力5 MP时己二酸的转化率、选择性均为50%,主要副产物为戊二酸和丁二酸。该反应以清洁、廉价的空气作为氧化剂,对在水相中由环己醇合成有价值衍生物,也是一种比较理想的氧化方法。

1.2 以环己酮为原料

纪明慧等以质量分数为30%的双氧水为氧化剂,在没有任何有机溶剂或助催化剂存在的情况下,考察了磷钨酸催化环己酮氧化合成己二酸的活性。结果表明,磷钨酸在环己酮氧化合成己二酸的过程中显示了较高的催化活性。研究了催化剂用量、过氧化氢用量、温度、时间等因素对磷钨酸催化活性的影响。反应的适宜条件为:n(环己酮):n(磷钨酸):n(过氧化氢)=150:0.5:587,反应温度为92℃,反应时间为8h,己二酸的收率可达60.6%。

蔡磊等以30%的双氧水为氧化剂,磺基水杨酸为配体,二缺位Dawson结构杂多盐K10Na2H2P2W16O60·18H2O为催化剂使环己酮氧化合成己二酸。杂多酸具有较强的酸性,不但具有类似于浓溶液的“拟液相”行为,而且有极强的氧化-还原能力,在均相和多相有机反应中,是理想的酸型和氧化型双功能性的催化剂。当n(杂多酸):n(磺基水杨酸):n(环己酮):n(过氧化氢)=2:1:100:400,反应温度为98℃,反应时间为5 h时,己二酸的分离收率可达76.7%。Dawson结构杂多盐催化剂制备简单,反应体系无需溶剂和相转移剂,反应时间较短,不失为一条合成己二酸环境友好的工艺路线。

袁先友等研究了以杂多酸为催化剂,在微波辐射条件下,以过氧化氢(30%)作为氧化剂,氧化环己酮来合成己二酸,对反应物的种类、催化剂种类及用量、配体种类、微波辐射功率及反应时间等因素对合成反应的影响进行了探讨,优化了催化合成己二酸的反应条件。实验结果表明,采用3.5 mL环己酮、0.5 g钨酸钠、0.5 g磺基水杨酸、15mL30%双氧水,在微波辐射功率为400W下反应50min,其产率可达到72%。

张敏等以30%的双氧水为氧化剂,用钨酸钠与草酸形成的配合物为催化剂,研究了在无有机溶剂、无相转移剂的条件下,由环己酮氧化制备己二酸的反应。结果表明,最佳反应条件为钨酸钠:草酸:环己酮:30%的双氧水的物质的量比为2.0:3.3:100:350,在92℃下反应12 h,可制得80.6%的己二酸。此法具有收率高、不使用有机溶剂、反应体系中不存在任何无机或有机卤化物等绿色化学所要求的特点。

1.3 由环己烯合成己二酸

李华明等以环己烯为原料,含30%的过氧化氢的双氧水为氧化剂,在磷钨酸作为助剂的条件下,采用磷钨酸作催化剂合成己二酸。磷钨酸在环己烯氧化合成己二酸的过程中具有一定的催化活性,草酸的加入可明显地提高磷钨酸的催化活性,当n(环己烯):n(磷钨酸):n(草酸):n(双氧水)=100:1:1:538,反应温度为92℃,反应时间为6h时,己二酸的收率可达70.1%。此法是合成己二酸是一种环境友好的合成路线。

阎松等研究了无需有机溶剂、酸性配体及相转移剂,以30%双氧水为氧源,单独使用三氧化钨作催化剂催化氧化环己烯合成己二酸即可达到较高的产率和纯度。当三氧化钨用量为5.0 mmol,三氧化钨:环己烯:双氧水的物质的量比为1:40:176时,在回流温度下反应6h,己二酸分离产率为75,4%,己二酸纯度为99.8%。三氧化钨催化剂重复使用4次,己二酸的分离产率仍可达到70%。

若使用十聚钨酸季铵盐作为催化剂,用过氧化氢把环己烯直接氧化为己二酸。所用的催化剂在水中是不溶解的,但在过氧化氢的作用下,它能参与活性氧转移的反应,并溶解于反应体系。当过氧化氢消耗完毕时,催化剂又沉淀出来,因此易于循环使用。通过催化剂的反应控制相转移,把均相和异相催化剂的优点结合在一个反应体系中,该法避免了均相催化剂分离的困难,并提供了生产己二酸的新方法。

因单独使用钨酸作催化剂时活性较低,尽管钨酸不溶于水,但钨酸很容易溶于30%双氧水中,因此,钨酸作催化剂并不影响己二酸的纯度。以有机溶剂为反应介质,在环己烯氧化合成己二酸的反应中,钨酸的催化活性高于钨磷酸。曹发斌等研究了不同的有机酸性添加剂对反应的影响。以钨酸、有机酸性添加剂为催化体系,在无有机溶剂、相转移剂的情况下,催化30%过氧化氢氧化环己烯合成己二酸。当钨酸:有机酸性添加剂:环己烯:过氧化氢(物质的量比)=1:1:40:176时,使用有机酸性添加剂考察钨酸的催化性能,结果表明以钨酸/间苯二酚催化氧化环己烯的催化效果最优,反应8h时己二酸分离产率达90.9%、纯度接近100%;而不使用有机酸性添加剂时,己二酸分离产率只有72.1%,产品纯度为96.2%。当使用磺酸水杨酸、草酸、水杨酸为有机酸性添加剂时,随反应时间的增加,己二酸分离产率均升高,但反应6h以后,己二酸分离产率随时间的变化不明显。当磺酸水杨酸用量为2.5mmol时,己二酸分离产率和纯度均较高。钨酸-磺酸水杨酸催化体系重复使用5次后,己二酸分离产率仍可达到80.5%。

李惠云等报道了在无相转移剂条件下,用磷钨酸催化过氧化氢氧化环己烯合成己二酸,收率最高为72.6%。草酸的加入使己二酸产率明显提高。草酸在过氧化氢反应系统中与磷钨酸存在强的相互作用,这种相互作用在很大程度上存在着配位效应,配体通常可改变中心原子的电子云密度以及空间环境,由于中心原子的这些变化,导致催化剂中心金属原子上的配位发生一系列的变化,这种配体效应增加了催化剂活性中心的载活氧化性和亲油性,从而有利于反应的进行。

相同情况下以钨酸/无机酸性配体为催化体系,在无有机溶剂和相转移剂的情况下,催化过氧化氢氧化环己烯合成己二酸。当使用磷酸、硼酸为无机酸性配体时,随反应时间的增加,己二酸产率均升高。

制取己二酸传统的氧化方法为硝酸氧化法,该工艺存在严重的氮氧化物污染,以过氧化氢氧化法合成己二酸则不存在此问题,过氧化氢是己二酸生产的一种理想的清洁氧化剂,氧化产物为己二酸和水,这从根本上消除了污染源;且具有反应条件温和、易于控制等优点,有望取代硝酸氧化法,成为今后己二酸生产的趋势。

用过氧化氢水溶液作氧化剂合成己二酸的过程中,催化剂至关重要。但用过氧化氢水溶液氧化环己烯合成己二酸的反应过程中,1 mol环己烯氧化生成己二酸理论上需要消耗4mol过氧化氢。据文献报道,过氧化氢的实际消耗约需过量10%。过氧化氢消耗高是限制此法工业化生产的主要问题,用部分氧气代替过氧化氢,以降低过氧化氢的消耗是此法研究的一个方向。

1.4采用不同的氧化法由环己烷合成己二酸

在钴催化剂存在下,环己烷在仁60℃,1 MPa经未稀释的空气氧化,得含环己醇、环己酮混和油(KA)油反应混和物(单程转化率5%左右),经精馏分离得KA油,未反应的环己烷循环使用。采用该法的优点的技术成熟,操作简单,缺点是存在结渣问题,收率较低(单耗为1.12 kg环己烷/kgKA油)。

1.4.2甲酸催化氧化法

环己烷在硼酸催化剂存在下,在168℃,1 MPa经空气氧化,得含KA油反应混和物(单程转化率10%左右)经分离得KA油,未反应的环己烷循环使用。用该法的优点是收率较高(单耗为1 kg环己烷/kgKA油)。缺点是工艺路线复杂,连续性较差。

1.4.3 无催化氧化法

环己烷在180℃,2 MPa经稀释后用空气氧化;得环己基过氧化氢,在催化剂作用下得含KA油反应混和物(单程转化率5%左右),经分离得KA油,未反应的环己烷循环使用。采用该方法具有上述两者的优点。

1.5 使用苯或苯酚合成己二酸

1.5.1 苯法

精苯经催化加氢生成环己烷,环己烷经氧化生成KA油(环己酮、环己醇的混和物),再经硝酸氧化生成己二酸。该工艺的原料除精苯外还涉及氢气、硝酸(液氨)等,工艺流程长,一次性资金投入大,副产物较多,存在工业三废污染,产品收率不高。但该工艺成熟,是目前工业上广泛采用的方法。目前全球采用苯法生产的己二酸合计产量为238万t/a,占总产量的88.2%。近年,在原始苯法的基础上,科研人员开发出一种新的己二酸生产方法,采用特殊催化剂使苯部分加氢生成环己烯,环己烯水合生成环己醇,再经硝酸氧化生成己二酸。该方法在生产环己醇过程中氢气消耗较少,副产物为环己烷,生成环己醇的过程几乎没有三废污染,产品质量好,收率较高,生产成本相对较低。目前日本旭化成和我国神马集团均采用此法生产己二酸,总规模约为17万t/a,占全球总产量的6.3%。

1.5.2 苯酚法

苯酚加氢生成环己醇,而后用硝酸氧化制得己二酸。该法设备投入和生产复杂程度与苯法相差不大,适合在苯酚原料相对丰富的地区。仅在美国Hopewell、巴西Paulinia、比利时Zandvoorde、德国Zeitz和意大利Novara共5家工厂采用此法,总规模约为15万t/a,占全球总产量的5.5%。

1.6 KA油空气氧化法

由于硝酸氧化所产生的氮氧化合物污染大气,所以人们在空气氧化方面进行了大量的研究工作。目前,应用氧气作氧化剂的工艺研究,主要集中在环己醇、环己酮、环己烷生成己二酸催化剂的应用方面。1963年美国科学技术公司连续发表空气氧化法制己二酸专利,同年,Rhom Hass公司用此法建成KA油空气氧化l万t己二酸工厂,但因质量不好未再扩建。此法的优点是环境污染小,不存在硝酸回收问题;缺点是转化率不高,反应时间长,需要醋酸回收设备,且生成杂质多,精制工序复杂,设备费用增大。该方法目前仍处于研发阶段。

1.7 以C4烯烃为原料生产己二酸

(1)孟山都工艺此工艺以PdCl2为催化剂,用1,4-二甲氧基-2-丁烯为原料进行羰基化,反应压力为6.87 MPa,反应温度为100℃,生产己二酸。超过100℃催化剂失活;温度低于100℃反应速率低。该法现仍在研究开发之中。

(2)巴斯夫工艺此工艺用裂解C4中的丁二烯(不经抽提)与一氧化碳在甲醇中发生羰基化反应,经一次羰基化反应得3-戊烯酸甲酯,经二次羰基化反应得己二酸二甲酯,最后水解得己二酸,采用八羰基二钴[CO2(CO)8]为催化剂,吡啶为促进剂,整个过程分为5步。采用丁二烯羰基化工艺制备己二酸,原料丁二烯较便宜,收率较高(72%),产品2-酸含量高,其生产成本比环己烷氧化工艺低;缺点是工艺第杂,反应条件苛刻,副产物较多。

1.8 以葡萄糖为原料

生产己二酸的传统原料-苯、环己烷及丁二烯都来自于石油,石油是不可再生的资源,利用可再生的生物资源代替石油是化工生产可持续发展的方向。可利用D-葡萄糖生物催化合成己二酸。在酶AB2834的催化下将D-葡萄糖转变为儿茶酚,儿茶酚在酶AB2834作用下进一步转化为顺,顺-己二烯二酸,顺,顺-己二烯二酸在室温和0.34 MPa下铂催化加氢合成己二酸,氢化收率90%。

1.9 其它合成方法

Chavan等分别以环己酮和环己醇混和物、环己烯、环己酮为原料,首次通过新颖的无硝酸工艺,以空气为氧源,使用Co/Mn簇配合物,合成己二酸。实验表明,Co/Mn簇配合物的催化活性和选择性比单独使用钻、锰的醋酸盐高,同时己二酸的产率接近于目前使用硝酸工艺合成己二酸的产率。

周民锋等报道在微波照射条件下,以Na2WO4·2H2O(1 mmol)为催化剂,用30%过氧化氢(44mmol)使1,2一环己二醇(10mmol)氧化开环合成己二酸。在pH=1时照射5min,分离产率可达88%。

据Chcai&EngNews,2003,81(20):36报道,中孔二氧化硅负载的双金属催化剂可以将己二烯二酸转化为己二酸。己二酸在工业中广泛用于生产尼龙66、聚酰胺、聚氨酯、润滑剂和其它材料。目前,通过空气氧化环己烷工业化生产2-酸,而环己烷来源于不可再生的矿物燃料。相反,己二烯二酸可以由D-葡萄糖经生物催化作用获得。英国皇家研究院和剑桥大学采用由4种双金属催化剂固定的纳米粒子和2种工业上可得到的单金属催化剂,由反,反-己二烯二酸加氢合成己二酸。Rulopt2在对于己二酸的选择性方面优于其它催化剂。这项研究对于未来在广泛的加氢反应中使用高表面积、热稳定的双金属纳米催化剂是一个好的预兆,这种加氢反应可以实现由植物来源生产所希望的化学产品。

神马集团采用环己醇硝酸氧化法生产工艺。环己醇在过量的硝酸溶液中氧化生成己二酸及副产物丁二酸、戊二酸等,利用己二酸、丁二酸、戊二酸溶解度的不同使己二酸结晶分离出来,用活性炭对己二酸进行脱色后再次结晶分离,使己二酸的纯度达到99.8%以上。

除以上介绍的几种己二酸生产方法外,还有环己烷硝酸一步氧化法、环己烯硝酸氧化法、环己烯氧-臭氧氧化法、丁二醇的羰基化法、过硫酸盐氧化法等。

‘叁’ 催化剂有什么好处

催化理论

古代时,人们就已利用酶酿酒、制醋;中世纪时,炼金术士用硝石作催化剂以硫磺为原料制造硫酸;13世纪,人们发现用硫酸作催化剂能使乙醇变成乙醚。直到19世纪,产业革命有力地推动了科学技术的以展,人们陆续发现了大量的催化现象。
如上所述,催化剂作用是在生产发展的同时为人们由浅入深地认识到的。1835年,贝采里乌斯首先总结了此前的30多年间发现的催化作用。为了解释这一现象,他首先采用了“催化”这一名词,并提出催化剂是一种具有“催化力”的外加物质,在这种作用力影响下的反应叫催化反应。这是最早的关于催化反应的理论。然而,人们对于催化作用特点是认识过程是漫长的。
在这一认识过程中,许多科学家都亲自从事化学实验并发现了许多催化反应。通过长期实践,逐渐积累加深了认识。
1781年,帕明梯尔用酸作催化剂,使淀粉水解。1812年,基尔霍夫发现,如果有酸类存在,庶糖的水解作用会进行得很快,反之则很缓慢。而在整个水解过程中,酸类并无什么变化,它好像并不参加反应,只是加速了反应过程。同时,基尔霍夫还观测到,淀粉在稀硫酸溶液中可以变化为葡萄糖。1817年,戴维在实验中发现铂能促使醇蒸气在空气中氧化。1838年,德拉托和施万分别都发现糖之所以能发酵成为酒精和二氧化碳,是由于一种微生物的存在。贝采里乌斯就此提出,在生物体中存在的那些由普通物质、植物汁液或者血而生成无数种化合物,可能都是由此种类似的有机体组成。后来,居内将这些有机催化剂称为“酶”。
1850年,威廉米通过研究酸在蔗糖水解中的作用规律,第一次成功地分析了化学反应速度的问题,从此开始了对化学动力学的定量研究。1862年,圣·吉尔和贝特罗在实验中发现,如果按照分子比将醋酸乙脂与水混合,经过几星期之后于进行观测,发现醋酸乙脂已部分水解成为乙醇和醋酸。这一反应的速度随时间处长而呈递减趋势。再将乙醇与酸混合,反应生成了醋酸乙脂,平衡后的比例相同。这一反应的速度同样很慢。但是,当有无机酸存在时,上述两个反应则可在几小时内完成。这样,无机酸作为一种催化剂可以促进两个反应向任一方向进行的反应速度。
1884年前后,包括奥斯特瓦尔德在内的几位化学家研究了各种酸对酯的水解作用以及蔗糖转化等现象的酸碱催化作用的解释,他认为催化剂现象的本质,在于某些物质具有一种特别强烈的使原本没有它参加而速度很慢的反应加速的特殊性能。他说,任何物质,如果它不参加到化学反应的最终产物中去,只是改变这个反应的速度即称为催化剂。另外,他通过总结大量的实验结果,根据热力学第二定律,提出了平衡的达成,不能改变平衡常数。
1905年,勒·罗西诺和哈伯等人,根据化学热力学的原理,研究计算了氢、氮和氨在各种温度和压力平衡情况后,利用各种催化剂的帮助,研究出从空气中的氮合成氨的实验方法。
在寻找催化剂和催化反应的过程的同时积累了大量的资料,使人们对催化剂和催化作用的认识不断深入。关于催化反应的理论也逐步得以发展。催化剂为什么能够改变化学反应的速度,而它本身在反应后又不发生化学变化呢?为了解释这一问题,在19世纪初期,就已经有人提出关于催化剂在反应中生成中间化合物的假说,认为催化剂之所以有所谓“催化能力”,是由于生成了中间化合物的结果。
1806年,德索尔姆在克雷蒙在研究一氧化氮对二氧化硫氧化的催化作用时,推想一氧化碳先与大气中的氧反应生成某种中间化合物。这一中间化合物再与二氧化硫相互作用,此时把氧转交给后者,中间物质自身又变为一氧化氮。一氧化氮可以再被空气氧化,之后再把氧交给二氧化硫。如果按照这种概念,这种均相催化反应是交错地进行的氧化还原过程的综合。一个缺憾是他们没有提出具体的反应的具体过程。
1835年,贝采里乌斯提出的过程与克雷蒙和德索尔姆的概念最为类似,他认为催化反应由下列两个过程交替进行:
2NO+O=N2O3
SO2+N2O3+H2O=H2SO4+2NO
可以看出,在贝采里乌斯所提出的过程中,三氧化氮就是相当于克雷蒙和德索尔姆所推想的把空气中的氧转交给二氧化硫的活性中间物质。在贝采里乌斯之后,威廉逊曾于1851年用相似的方法来解释该反应的进行。从此,中间化合物这一概念得到确立,并在以后得到广泛应用。
邢歇伍德等人在1930年,以碘蒸气为催化剂进行乙醛蒸气的加热分解反应,发现均相催化反应的速度常常与催化剂的深度成正比的。而在该反应中,作为催化剂的碘蒸气的深度始终不变,邢歇伍德认为,这一事实说明由于催化剂K先与某一反应物A或B相互作用,生成了活性的中间化合物X,此中间化合物进一步转变而生成C并使催化剂再生。他们用以下形式表达上述反应历程:
A+K=X+……
X+B=C+K……
可见,活性的中间化合物的假说因此得以进一步的证实和完善,同时均相催化理论也得到了发展。
随着更多实验事实的发现和研究的不断伸入,人们发现催化剂作用不仅是均相地进行,更多的是这一类反应则是在多相中进行。并且,这时反应物在相界面上的浓度更大,这种现象被称为“吸附作用”。科学家们把吸附分为两种类型,一种是简单的物理吸附;另一种是吸附的同时形成化学键,称为化学吸附,当然,这一类完成是吸附的同时形成化学键,称为化学吸附,当然,这一类完成的过程是曲折的。
催化反应的吸附理论首先是由意大利人珀兰尼在1824年提出的。他认为,由于吸附作用使物质的质点相互接近,因而它们之间容易发生反应。他说,吸附作用是由于电力而产生的分子吸引力。
1834年,法拉第则提出了与上者不同的吸附理论,他认为催化反应不是电力使然,而是靠体物质相互吸收所产生的气体张力。他认为,如果催化剂表面极为干净,气体就会附着其上而凝结,一部分反应分子彼此接近到一定程度时,就会使新合力发生作用,抵消排斥力,因而使反应变得容易进行。朗缪尔在1916年间,发表了一系列关于单分子表面膜的行为及性质,和关于固体表面吸附作用的研究成果影响到催化理论的形成。之后,科学界在1920年-1940年间大量的研究成果对催化吸附理论有着重大影响。值得注意的是,在这一时期通过对吸附量和脱附速度的研究,以及关于催化过程中催化失去催化活力的研究,得出了对多相催化理论有着根本意义的结论,即催化反应是在催化剂表面直接相连的单分子层中进行的。
就此,美国人泰勒于1925年首先提出了活性中心理论,其出发点即催化剂失去活性这一实验事实。他认为催化剂的表面是不均匀的,位于催化剂表面微型晶体的棱和顶角处的原子具有不饱合的键,因而形成了活性中心,催化反应只发生在这一活性中心。泰勒的理论很好地解释了催化剂制备对活性的影响以及毒物对活性的作用。
在泰勒之后,前苏联的两位科学家对活性中心理论进行了进一步的完善和发展。1929年,巴兰金提出了多位催化理论,认为催化剂活性中心的结构应当与反应物分子在催化反应过程中发生变化的那部分结构处于向何对应。这一理论把催化活化看作反应物中的多位体的反应过程,并且这个作用会引起反应物中价键的变形,并使反应物分子活化,促成新价键的形成。另一位苏联人柯巴捷夫于1939年提出了活性集团理论,与泰勒不同的是他认为活性中心是催化剂表面是上非晶体中几个催化剂原子组成的集团。
20世纪50年代以后,随着固体物理的发展,催化的电子理论应运而生。在这一层面上,科学家们到得了丰富的实验成果,他们将金属催化性质与基电子行为和甲子能级联系起来。70年代,根据催化剂表面的原子结构、络合物中金属原子簇的结构和性质,利用量子化学理论,对多相催化的高分散的金属催化刘活性集团产生催化活性的根源。在科学突飞猛进的今天,催化作用的实质以及催化剂发生作用的秘密即为人类认知

‘肆’ 催化剂酶的优点是什么

使用酶制剂对环境有什么好处?

* 酶制剂通常可以用来替代那些化学的过程,以使整个加工或生产过程更加安全,环境更加环保。

* 在淀粉加工过程中替代酸。

* 在织物脱浆过程中替代酸、碱和氧化剂。

* 在制革厂酶制剂的应用可以减少硫化物的使用。

* 在石洗牛仔裤工艺中,酶制剂可以替代那些用来磨光的石头,这将大大减少磨光和浪费。

* 酶制剂可以用在动物饲料中,以增加饲料的更大的消化能了,从而减少动物的浪费。

* 在洗衣时酶制剂可有效去污,这将有利于衣物即使在较低的温度条件下也可以洗涤,从而节约能源。酶制剂在衣物去污渍时还可替代氯漂白。使用酶制剂也可大大减少表面活性剂的应用,这将使得衣物即使在磷酸盐较缺乏地区也可清洗的很好。

使用酶制剂的其它好处?

* 酶制剂,作为一种生物催化剂,通常可以用来替代那些化学的过程,以使整个加工或生产过程更加安全,也将更加有利于环保。

* 酶制剂将有利于环境的保护,比如,它们通过与清洁剂的结合,清洗的温度就可以更低;它们通过与饲料的结合,将会获得有效资源的更充分利用。

* 酶制剂也将有利于我们的客户,当洗衣时,清洁剂的配方若能采用较温和的配方,将有利于减少对衣物的损伤。

* 生产过程中,酶制剂的使用也将会使生产条件变得更加地安全,比如,在淀粉加工,造纸和纺织品处理过程中,化学品的威胁将会大大见小。

酶制剂是怎样生产出来的?

* 自然产生的酶制剂的数量通常不足以应用于工业化的生产中。生物技术为工业化应用的酶制剂的生产提供了这种可能性,我们通过优化微生物的生存条件,从而提高它的生产量。这项技术,多年前就以被掌握,叫做:发酵。通过这个发酵的过程,酶制剂被分离出来,进一步应用于工业化的生产中。

酶制剂是活的生物体吗?

* 不是。尽管酶制剂是由许多活的细胞组成的,但它们不是活的材料。

有多少种类地酶制剂?

* 酶制剂通常是按照它们的化合物进行分类。其中最普通的几种包括:分解蛋白质的蛋白酶,分解纤维素的纤维素酶,把脂肪分解成甘油和脂肪酸的脂肪酶,将淀粉分解成单糖的淀粉酶等。

哪一个行业会用到酶制剂?

* 清洗剂产品

在世界范围内,酶制剂的首要应用是作为清洗剂和洗涤产品时的活性生物成分。同时,蛋白酶、淀粉酶和脂肪酶通常用于分解蛋白质、淀粉和油脂污渍等。我们通过已一些稳定性研究来测试我们的酶制剂与清洗剂成分的兼容性,并测试各种不同的配方。我们通过完善的实验室的实验来论证酶制剂在各种不同的条件下是如何进行工作的。

* 纺织品

酶制剂通常也用在纺织工业中,主要用于织物和衣服外套的后整理。其主要应用包括:脱浆,即从织物纤维中去除坚硬的成分;使经过编织后的织物的弯曲的线拉直;实施生物打磨以减少起球的趋势,并使织物更平整,表面更加光滑。而在生物石洗过程中,只要加入少量的酶制剂,就可以替代传统的粗斜纹棉布石洗时所用的磨光石,从而使成衣看上去更加漂亮。

* 农产品加工

酶制剂在农作物加工中,主要应用于液化和糖化的过程,此过程是将淀粉转化为葡萄糖和将同分异构体转化为果糖。杰能科的酶制剂能将大量的玉米和其他农作物转化为淀粉糖,如高果玉米糖浆和麦芽糖浆。

* 特殊行业用酶

酶制剂被广泛应用的其它领域还包括:烘焙、果汁加工、酿造、蒸馏、酿酒、皮革加工、油脂类产品、造纸与纸浆和动物饲料等行业。

杰能科国际公司在酶制剂工业的投资策略是什么?

* 杰能科国际公司是世界第二大工业酶制剂的发展和生产商,她拥有许多的专利和世界范围的应用确认,见证了她在生物科技领域的商业化应用中所获得的无数巨大的突破。

* 杰能科在1988年向世人展示了其第一个具有一定生产规模的经重组的酶制剂,并且她还一直在蛋白质工程领域、分泌技术领域、酶制剂作用物交互作用领域居于世界领先的地位

‘伍’ 复合催化剂 优点 复合催化剂有什么优点和特点 那什么是复合催化剂,有没有什么确切的定义。

催化效率高,

‘陆’ 催化剂的特点有哪些

催化剂的基本特点:

1、催化剂只能加速热力学上可以进行的反应。要求开发新的化学反应催化剂时,首先要对反应进行热力学分析,看它是否是热力学上可行的反应。

2、催化剂只能加速反应趋于平衡,不能改变反应的平衡位置(平衡常数)。

3、催化剂对反应具有选择性,当反应可能有一个以上不同方向时,催化剂仅加速其中一种,促进反应速率和选择性是统一的。

4、催化剂的寿命。催化剂能改变化学反应速率,其自身并不进入反应,在理想情况下催化剂不为反应所改变。但在实际反应过程中,催化剂长期受热和化学作用,也会发生一些不可拟的物理化学变化。

根据催化剂的定义和特征分析,有三种重要的催化剂指标:活性、选择性、稳定性。

2催化剂的主要作用

1、加快化学反应速率,提高生产能力。

2、催化剂只加速反应趋于平衡,不能改变反应的平衡位置。

3、催化剂对反应有选择性,当反应有一个以上不同方向时,催化剂只加速其中一种,促进反应速率和选择性是统一的。

4、催化剂的寿命。催化剂能改变化学反应速率,自身并不进入反应,理想情况下催化剂不为反应所改变。实际反应过程中,催化剂长期受热和化学作用,也会发生物理化学变化。

5、对于复杂反应,可选择加快主反应的速率,抑制副反应,提高目的产物的收率。

6、改善操作条件,降低对设备的要求,改进生产条件;

7、开发新的反应过程,扩大原料的利用途径,简化生产工艺路线;

8、消除污染,保护环境。

3常见的催化剂种类
催化剂种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂,均相催化剂有酸、碱、可溶性过渡金属化合物和过氧化物催化剂。多相催化剂有固体酸催化剂、有机碱催化剂、金属催化剂、金属氧化物催化剂、络合物催化剂、稀土催化剂、分子筛催化剂、生物催化剂、纳米催化剂等;按照反应类型又分为聚合、缩聚、酯化、缩醛化、加氢、脱氢、氧化、还原、烷基化、异构化等催化剂;按照作用大小还分为主催化剂和助催化剂。

‘柒’ 现在挺火的燃油催化剂是不是真的有说的那么好哦

是的。

燃油催化剂是在燃料(柴油)在燃烧过程中能起到促进燃烧作用的物质(也叫添加剂),燃料完全燃烧的好处就是降低了燃料的消耗、减少废气排放、减少油渣在引擎表面的沉积和提升机车动力性能。

燃油催化剂的类型

国内外的燃油催化剂分4种:第一代,主要针对化油器沉积物起作用;第二代主要针对喷油嘴起作用;第三代主要对喷油嘴、进气阀结胶、积碳起作用;第四代除对喷油嘴、进气阀有清洁作用外,最大的进步是对燃烧室的积碳生成有抑制、分解作用。

这四代产品,新一代都是在保持老一代功用上的发展,所以按理来说。市场上出售的产品都应该是第四代燃油添加剂才对,但事实上却是燃油添加剂市场四世同堂,什么都有。

‘捌’ 铂金催化剂具有哪些优点

我们是硅橡胶厂家,对铂金催化剂还是比较熟悉的,楼上讲的很全面很专业,赞一个

‘玖’ 负载型催化剂的优点有哪些

最主要优点是化学性质比较稳定。是酸性氧化物,不跟一般酸反应。它不与除氟、氟化氢以外的卤素、卤化氢以及硫酸、硝酸、高氯酸作用(热浓磷酸除外)。
如果与催化剂发生反应会导致催化剂中毒。反应原料中含有的微量杂质使催化剂的活性、选择性明显下降或丧失的现象。中毒现象的本质是微量杂质和催化剂活性中心的某种化学作用,形成没有活性的物种。
其次二氧化硅具有耐磨性好、化学性能稳定、熔点高等性质。为此,以它为主要矿相的材料作为催化剂载体,其性能稳定。
还有处理后的二氧化硅具有很高的比表面积,吸附性强,能加大催化剂的催化效率!
总的来说二氧化硅载体对催化效率、催化活性、催化剂负载的牢固性、使用寿命、价格等方面都有比较大的优势!
气相二氧化硅(气相白炭黑)是极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在催化剂载体中尤其有优势。

‘拾’ 催化剂有什么形式的,哪种催化剂好点催化剂的好坏有什么影响

催化剂制备方法有哪几种,优缺点是什么,现今常用的是哪种?
参考答案催化剂制备方法一般有三种:浸渍法、共沉淀法和混捏法。浸渍法:优点:活性组分都分散在催化剂表面,因而在催化反应中活性组分的...

阅读全文

与催化剂亲油性好有什么优点相关的资料

热点内容
一次燕窝要多少克 浏览:1044
面部血管瘤怎么治不留疤 浏览:1864
yamii胶原蛋白怎么吃 浏览:1298
贵阳祛斑哪个好先荐利美康 浏览:1231
和田玉戈壁料没油性怎么办 浏览:838
鹅耳朵冻疮涂什么精油 浏览:1853
燕窝有什么不好的副作用吗 浏览:826
皮肤使用爽肤水有什么好处 浏览:1196
漂白燕窝炖不烂怎么办 浏览:1377
燕窝跟什么吃最好 浏览:1619
容易长痘痘油皮怎么可以做美白 浏览:1440
医院和美容院哪个祛斑好 浏览:1607
山羊奶面膜与龙血精华面膜哪个好 浏览:1647
学生干皮适合什么面霜 浏览:1430
生姜和什么一起煮能祛斑 浏览:1284
两三个月的宝宝选面霜怎么选 浏览:1503
嘴巴上和下面长痘怎么治 浏览:1603
南京医院激光祛痘印多少钱 浏览:932
燕窝每天多少毫升合适 浏览:1541
胶原蛋白肽分子量多少利于吸收 浏览:866