A. 磁流体的基本介绍
磁流体作为一种特殊的功能材料,是把纳米数量级(10纳米左右)的磁性粒子包裹一层长链的表面活性剂,均匀的分散在基液中形成的一种均匀稳定的胶体溶液。磁流体由纳米磁性颗粒、基液和表面活性剂组成。一般常用的有、、Ni、Co等作为磁性颗粒,以水、有机溶剂、油等作为基液,以油酸等作为活性剂防止团聚。由于磁流体具有液体的流动性和固体的磁性,使得磁流体呈现出许多特殊的磁、光、电现象,如法拉第效应、双折射效应和线二向色性等。这些性质在光调制、光开关、光隔离器和传感器等领域有着重要的应用前景。
磁流体在磁场的作用下形成丰富的微观结构,这些微观结构对光产生不同的影响,能在很大的程度上改变光的透射率和折射率、产生大的法拉第旋转、磁二向色散性、克尔效应等。磁流体的这种在磁场中的特性可以用在磁光开关、磁光隔离器、磁光调制器、粗波分复用器等。
磁流体力学是结合经典流体力学和电动力学的方法,研究导电流体和磁场相互作用的学科,它包括磁流体静力学和磁流体动力学两个分支。
磁流体静力学研究导电流体在磁场力作用于静平衡的问题;磁流体动力学研究导电流体与磁场相互作用的动力学或运动规律。磁流体力学通常指磁流体动力学,而磁流体静力学被看作磁流体动力学的特殊情形。
导电流体有等离子体和液态金属等。等离子体是电中性电离气体,含有足够多的自由带电粒子,所以它的动力学行为受电磁力支配。宇宙中的物质几乎全都是等离子体,但对地球来说,除大气上层的电离层和辐射带是等离子体外,地球表面附近(除闪电和极光外)一般不存在自然等离子体,但可通过气体放电、燃烧、电磁激波管、相对论电子束和激光等方法产生人工等离子体。
能应用磁流体力学处理的等离子体温度范围颇宽,从磁流体发电的几千度到受控热核反应的几亿度量级(还没有包括固体等离子体)。因此,磁流体力学同物理学的许多分支以及核能、化学、冶金、航天等技术科学都有联系。
B. 磁流体被磁铁吸引时流体的形状为什么没有那种针尖的形状
因为你的磁铁磁性不够强
C. 如何用打印机墨水和植物油来做磁流体
不是普通的打印机墨水,而是micr磁性识别墨水,实际上,这个已经是磁流体了
只不过性状不那么好,加入的植物油也是加入表面活性剂,你加洗衣液也可以,主要是不能有泡泡
搅拌很重要,分散要均匀,然后,你需要一个强力磁铁,我这有超强的MRI上用的,我也想玩
D. 我很想知道"磁流体"这种物质的资料国内是否有这东西
妙用无穷的铁磁流体
黄祥卉
提起磁性材料,你首先会想到什么呢?是各种金属磁性材料,还是以铁氧体为代表的非金属磁性材料,抑或是高分子和无机材料组合而成的各类磁性复合材料?如果有人告诉你,除了这些常见的固相磁性材料外,现在还有一种以液体形式存在和使用的磁性材料,你是否会觉得不可思议,匪夷所思呢?
其实,这种神奇的液体磁性材料是确实存在的。磁流体就是以液体形式存在的磁性材料,它是由粒径约为10nm的强磁性粒子,通过表面吸附界面活性剂分子而稳定分散于合适基液中所形成的一种胶态体系。根据所含的磁性粒子不同,可分为铁氧体系、金属系和氮化铁系3类。根据基液的不同可为水基、油基、醚基和酯基。
磁流体是功能材料中的一支新秀,它既具有磁性又具有流动性, 在重力和磁力作用下能够保持稳定, 不会出现沉淀或分层现象。与其他液体相比,磁流体具有以下特点:
(1) 在外加磁场下, 有悬浮在载体中的能力。
(2) 既具有液体的流动性, 又具有固体磁性材料的特性, 有感应磁通的能力。
(3) 调节外加磁场强度, 可以改变磁流体的表观比重和粘度, 能使磁性的固体稳定地悬浮在其中。
(4) 超声波在磁流体中传播时, 其速度以及衰减与外磁场有关, 并显示各向异性。它的介电常数也是各向异性的。光通过稀释的磁流体时, 或磁流体的薄层时, 会产生光的双折射现象。当磁化时, 使相对于磁场方向具有光的各向异性, 具有高的折射率。此外, 在交变磁场中还具有磁粘滞现象。
(5) 在垂直磁场的作用下, 会自发地形成稳定的波峰。
(6) 对外加磁场的响应速度快, 撤去外磁场后,磁流体中的磁性粒子很快呈现无规则分布 , 即在无外加磁场时, 磁流体本身是不显磁性的。
(7) 磁流体在外加磁场的作用中, 将流向并固定在磁场强度高的一方。
对磁流体的研究起源于50 年代,标志是美国的Papell 在1963 年获得的第一个磁流体制备专利,并于1965 年在美国的NASA 航天产品的密封中获得成功应用。自此引发了对这种新型材料的研究开发和应用,并不断的取得新的进展,一步步的从实验室迈向实用化。70 年代我国开始进行磁流体的基础研究和应用探索。磁流体最通常的制备方法是借助于共同沉淀法制得粒度约为10nm 的磁铁矿之类铁氧体之后,吸附以界面活性剂,然后分散于油或水中即制成磁流体。新近又开发成功了将比铁氧体饱和磁化强应更大的纳米金属铁粉分散于液体中的磁流体,它是在水中添加粒径大的正离子或负离子(取代界面活性剂) 而将铁磁性纳米颗粒分散于液体中的离子性磁流体。当前,在磁流体中分散的铁磁性颗粒仅限于10nm 左右的大小,但可以通过改变所分散的铁磁性微粉和分散介质溶剂的性质来适应其各种用途。如果作为铁磁性微粉采用感温性铁氧体时可作磁流体泵和热泵使用;溶剂采用液态金属时则可制备成导电性磁流体;溶剂采用弹性橡胶时可制成磁性橡胶;如果采用气体作为介质还可制成磁性气体。目前,应用最广的典型用途便是磁流体密封,还有利用磁流体的重力分选技术,以及加速度计等方面均已实用化。磁流体的应用现已扩展到机械、电子、能源、化工、冶金、船舶、航天、遥测、仪表、印刷、环保、卫生、医疗等诸多领域, 在密封、冷却、润滑、医学、发动机、压缩机、换能器、计量阀、造影剂、生物学、精密研磨、阻尼减振、矿物分离、油水分离、快速印刷、定向淬火、执行元件、磁畴观察、各向异性以及其它方面有着新的应用, 是唯一具有工业实用价值的液体磁性智能化功能材料。
国内暂时没有生产,多是进口的
E. 电磁流体力学与磁流体力学有什么区别和关系
电磁流体力学:
研究带电流体和导电流体的运动规律、尤其是它们在电磁场中运动规律的科学。力学的分支学科。流体力学与电动力学间的边缘科学。其研究对象有带电粉尘、液态金属、等离子体等等。等离子体是含有足量的自由带电粒子,以致其动力学行为受电磁力支配的任何物体的一种状态,是不同于固体、液体和气体的物质等四态,通常指电离气体。
磁流体力学:
用流体力学和电动力学的方法研究导电流体和磁场相互作用的科学。电磁流体力学的分支学科。研究对象主要是稠密的等离子体和液态金属。磁流体力学有磁流体静力学和磁流体动力学两个分支。磁流体静力学研究导电流体在磁场力作用下的静平衡问题; 磁流体动力学研究导电流体与磁场相互作用的动力学规律。但磁流体力学通常即指磁流体动力学,而磁流体静力学被看作磁流体动力学的特殊情形
F. 磁流体密封的磁流体的特性
磁流体是一种叫胶体溶液。作为密封用的磁流体,其性能要求是:稳定性好,不凝聚、不沉淀、不分解;饱和磁化强度高;起始磁导率大;粘度和饱和蒸气低,其他如凝固点、沸点、导热率、比热和表面张力等也有一定的要求。
影响磁流体稳定的主要因素有:微粒力度大小、表面活性剂和载液以及它们的合理配比。稳定性是磁流体各种特性存在的前提。
磁流体密封装置是由不导磁座、轴承、磁极、永久磁铁、导磁轴、磁流体组成,在均匀稳定磁场的作用下,使磁流体充满于设定的空间内,建立起多级“O型密封圈”,从而达到密封的效果;每级密封圈一般可以承受大于0.15~0.2个大气压的压差。总承压为各级压差之和,一般设计为2.5个大气压,总体耐压随液态“O”形圈的级数增加而增加。被世界各国广泛公认的“零泄漏”动密封先进技术。
G. 磁流体密封的磁流体的原理
圆环形永久磁铁,极靴和转轴所构成的磁性回路,在磁铁产生的磁场作用下,把放置在轴与极靴顶端缝隙间的磁流体加以集中,使其形成一个所谓的“O”形环,将缝隙通道堵死而达到密封的目的。这种密封方式可用于转轴是磁性体和转轴是非磁性体两种场合。前者磁束集中于间隙处并贯穿转轴而构成磁路,而后者磁束比不通过转轴,只是通过密封间隙中的磁流体而构成磁路。
H. 磁流体看起来十分坚硬,摸起来却很柔软,这到底是为什么
个人认为最主要的原因还是由于磁流体自身化学性质所决定的,也是一中新型的功能性材料。
铁磁流体复合材料的制备方法主要有研磨法、凝胶剥离法、热分解法、放电法等。(1)研磨方法。也就是说,将磁性材料、活性剂和载液研磨成非常细的颗粒,然后通过离心或磁选分离大颗粒,从而获得所需的磁流体。这种方法是最直接的方法,但很难获得直径在300纳米以下的磁流体粒子。
磁流体又称磁性液体、铁磁性源流体或磁性液体,是一种新型功能材料,兼有液体的流动性和固体磁性材料的磁性。磁流体力学主要应用于三个方面:天体物理、受控热核反应和工业。宇宙中的恒星和星际气体是等离子体,有磁场。泵由原动机控制,驱动介质运动。它是将原动机输出的能量转化为中压比能的能量转换装置。泵主要用于输送液体,包括水、油、酸碱液体、乳液、悬浮液和液态金属,也可输送液体、气体混合物和含有悬浮固体的液体。