‘壹’ 羟基和酯基哪个溶解度大
羟基的亲水性会比羧基弱,羧基有两个氧,而且在水中可以电离出氢离子和羧酸根从而增大溶剂化效应。乙醇和乙酸溶液度相同,能和水以任意比例混溶。
‘贰’ 酯基的化学性质有哪些
酸性条件下酯的水解不完全,碱性条件下酯的水解趋于完全。原因是因为碱能中和水解产生产生的羧酸,使反应完全进行到底。
例如乙酸乙酯与氢氧化钠的反应
CH3COOCH2CH3+NaOH→CH3COONa+CH3CH2OH(反应需加热)
反应不可逆。
※若为酚酯,1mol酯基消耗2molNaOH。
若为普通酯基,1mol酯基消耗1molNaOH。
因为酚酯还有一个羟基。也要消耗1molNaOH。
甲酸某酯可以和氢氧化铜或银氨溶液反应,因为甲酸某酯含有醛基,具有醛的性质。
CH3COOCH2CH3+H2O↔CH3COOH+CH3CH2OH(反应条件:加热,浓硫酸)
应该就这些了。
‘叁’ 酯基是不是亲水基
酯基不是亲水基。
亲水基团:又称疏油基团,具有溶于水,或容易与水亲和的原子团。可能吸引水分子或溶解于水,这类分子形成的固体表面易被水润湿。
脂类在碱性环境或者弱酸性环境下可以水解:弱酸性条件下:R1-COO-R2+ H2O=R1-COOH + R2OH (R指烃基)碱性条件下:R1-COO-R2 + OH - = R1-COO- + R2-OH碱性条件下水解较为彻底。
(亲水基:氨基,羟基,羧基,磺酸基 ,醛基。憎水基:烃基,酯基。)
所以酯基在一定条件能发生水解反应,但他不是亲水基团(不符合亲水基团的条件)。
羧酸衍生物中酯的官能团,-COOR(R一般为烷基等其他非H基团),酯基主要发生水解反应。
在有酸或有碱存在的条件下,酯能发生水解反应生成相应的酸或醇。
酸性条件下酯的水解不完全,碱性条件下酯的水解趋于完全。原因是因为碱能中和水解反应产生的羧酸,使反应完全进行到底。
酯是中性物质。低级一元酸酯在水中能缓慢水解成羧酸和醇。酯的水解比酰氯、酸酐困难,须用酸或碱催化。许多天然的脂肪、油或蜡经水解可制得相应的羧酸,油脂碱性水解生成的高级脂肪酸钠就是肥皂,酯的醇解反应是酯中的烷氧基被另一醇的烷氧基所置换的反应,反应须在酸或碱催化下进行,此反应常用于从一类酯转变成另一类酯。酯可被催化还原成两分子醇,应用最广的催化剂是铜铬氧化物,反应在高温高压下进行,分子中如含有碳碳双键,可同时被还原。此反应广泛用于油脂的氢化。酯与格氏试剂反应,可合成具有两个相同取代基的三级醇。
‘肆’ 酯基有没有亲水性,原因是什么
大家都知道,水和油混合时就分为二层,一般上层是油,下层是水,它们的性质不同。其它化学药品、中草药化学成分,虽然各有不同的性质,但他们的溶解性有的近于水,有的近于油。近于水的就疏于油,近于油的就疏于水。这种近于水的就叫做亲水性,近于油的叫做亲脂性。不同的化合物近于水或近于油的程度是会有所差异的,近水程度大的叫做亲水性强,近油程度大的叫做亲脂性强。同一个化合物只要亲水性强,亲脂性就必然弱,反之亲脂性强,亲水性必然弱。我们都知道化学里有一个原理叫做相似相溶。由于分子的极性是否相似对溶解性影响很大,所以,相似相溶原理又可以理解为“极性分子易溶于极性溶剂中,非极性分子易溶于非极性溶剂中。,水分子是极性的,那么,极性越强越容易与水相溶。所以你的想法是对的。
‘伍’ 如何鉴别酯基
你说的应该是基酯吧
MFE乙烯基酯树脂的性能及其在防腐蚀领域的应用研究 华东理工大学 周润培 侯锐钢 王晓东 雷 浩 刘坐镇 一. 前言 乙烯基酯指的是分子二端含有乙烯基团,中间骨架为环氧树脂的那一类不饱和聚酯。它们是由不饱和有机一元羧酸(最常用的为丙烯酸和甲基丙烯酸)和环氧树脂进行开环酯化反应而得,故也可称为不饱和酸环氧酯 (1)。乙烯基酯是个外来词,其含义并不确切,比较确切的名称应该是环氧乙烯基酯。前苏联文献将这类化合物称为环氧丙烯酸酯、环氧甲基丙烯酸酯等。我国早期的文献曾将这类化合物称为甲基丙烯酸环氧酯、丙烯酸环氧酯等,或统称为不饱和酸环氧酯。 乙烯基酯树脂的开发研究起始于上世纪六十年代。1964年美国Shell化学公司首先开发了一种商品名为Epicryl的双酚A型环氧乙烯基酯树脂,以后美国Dow化学公司相继开发了多种牌号为Derakane的同类产品。日本随后也开发了一系列商品名为Ripoxy的乙烯基酯树脂(2)。我国对这类树脂的开发研究起始于上世纪七十年代初期,华东理工大学(原名华东化工学院)、四川晨光化工研究院、上海树脂厂和天津合成材料研究所等单位最早报道了这方面的工作并进行了应用研究。乙烯基酯树脂的应用领域是多方面的,其中最广泛也是最重要的是在防腐蚀领域。华东理工大学是国内耐腐蚀乙烯基酯树脂最早的研究单位之一,也是在防腐蚀工程中应用 乙烯基酯树脂最早的单位。早在1975年,由上海化工学院(即现在华东理工大学)研制的甲基丙烯酸环氧酯树脂(ME型乙烯基酯树脂)就已成功地应用于当时新建的上海石化总厂维尼纶厂的醛化浴(内含30%H2SO4和甲醛)防腐蚀工程(3)。 1980年和1981年第一个商品名为MFE-2的乙烯基酯树脂相继在我校协作厂和自办企业正式投产。二十多年来的开发和应用研究使华东理工大学华昌聚合物有限公司已成为国内主要的环氧乙烯基酯树脂科研生产基地,拥有系列化的MFE乙烯基酯树脂品牌,积累了丰富的工程应用和施工经验。环氧乙烯基酯树脂从面世以来已有近四十年的历史,期间出现了无数品牌商品、专利和文献。据笔者所知,目前国内外研究和生产的乙烯基酯树脂大致可分为以下几类: 由甲基丙烯酸(M)和双酚A环氧树脂(E)为主要原料的ME型乙烯基酯;由丙烯酸(A)和双酚A环氧树脂为主要原料的AE型乙烯基酯;由甲基丙烯酸和酚醛多环氧树脂(F)为主要原料的MF型;丙烯酸和酚醛多环氧树脂为主要原料的AF型;由甲基丙烯酸、富马酸(F)和双酚A环氧树脂为主要原料的MFE型以及由甲基丙烯酸和含溴双酚A环氧树脂为主要原料的MEX型等(表1)。此外尚有许多异氰酸酯、橡胶等改性剂改性的乙烯基酯树脂。即使是同样原料组成的乙烯基酯树脂,由于原料配比不同、生产工艺不同和固化条件不同等因素,其固化产品(浇铸体)也会具有不同的物理和化学性能。 表1 耐腐蚀环氧乙烯基酯树脂的分类(按化学组成) 乙烯基酯类型 主要原料 特点 不饱和酸 环氧树脂 ME 甲基丙烯酸(M) E型环氧 通用型 AE 丙烯酸(A) E型环氧 韧性 MF 甲基丙烯酸(M) F型环氧 耐高温 MFE 甲基丙烯酸(M)、富马酸(F) E型环氧 通用型 AF 丙烯酸(A) F型环氧 韧性、耐高温 AFE 丙烯酸(A)、 富马酸(F) E型环氧 韧性 MEX 甲基丙烯酸(M) EX型环氧 阻燃 从乙烯基酯的发展史来看,ME型乙烯基酯是较早开发成功的商品树脂,一些厂商把这类树脂称之为标准型乙烯基酯树脂,但却不见其典型配方。事实上ME型乙烯基酯树脂也是多品种的,笔者早期也集中在这一类型乙烯基酯树脂的合成和性能研究(4),究竟怎样配方的ME型树脂是标准?目前尚无公认的典型配方。在不饱和聚酯树脂大家庭里公认的标准树脂是聚邻苯二甲酸/反丁烯二酸丙二醇酯,其典型配方为邻苯二甲酸酐: 顺丁烯二酸酐:丙二醇=1:1:2.15(摩尔比)。标准树脂并不等于最好的树脂,当年最好的树脂并不等于永远是最好的,这已为不饱和聚酯树脂的发展史所证实。 总之,科学在发展,技术在进步,今后会有更多新的品种加入到乙烯基酯树脂的行列中,老的品种也会不断改进提升品质。 二. 分子结构及性能 1. 环氧乙烯基酯的分子结构 (1) ME和AE型环氧乙烯基酯分子的化学结构如下: (2) MFE和AFE型环氧乙烯基酯分子的化学结构如下: 由此可见,ME型和MFE型乙烯基酯的分子结构非常相近,只是由于扩链剂富马酸的存在使MFE型乙烯基酯的分子量比ME型的扩大了几乎1倍。华昌公司生产的MFE型乙烯基酯树脂的红外光谱与Dow化学公司生产的Derakane- 411树脂的红外光谱相雷同也证明了这一点(见图1)。一些作者指责MFE乙烯基酯不是真正意义上的乙烯基酯,我们不明白真正的乙烯基酯该是怎样的分子结构?红外光谱不能鉴别是否是乙烯基酯,难道真的只有用一些人发明的“凝胶前是否发生自发性冒泡”来分辨真假乙烯基酯吗? 2. 分子结构与耐化学腐蚀性 高分子物理学告诉我们:高分子化合物无论是线型的还是网状的,其分子结构都是多层次的,一次结构为分子的化学结构;二次结构为分子的形态结构;三次(或称高次)结构为分子的聚集态结构。本文不准备对此作详细的阐说,只想指出分子的化学组成既不能代替分子的化学结构,更不等同于分子结构,因此单凭化学组成不能决定高分子化合物的性能。举例来说,同样化学组成的聚丙烯,无规聚丙烯的力学性能很差,不能作为材料使用,只有用定向聚合法得到的聚丙烯才是有用的工程材料。 环氧乙烯基酯由于化学结构的特点:酯基密度小且都处于可交联双键的邻近,因此与疏水的苯乙烯发生共聚交联反应生成网状结构后具有高度的水解稳定性。影响环氧乙烯基酯树脂水解稳定性的因素有:酯基密度、酯基相邻基团的空间保护作用和交联剂苯乙烯的含量(5)。 (1) 酯基密度 环氧乙烯基酯和不饱和聚酯一样,可水解的基团为其分子结构中含有的酯基(—C=O—O—),因此酯基相对含量(以酯基密度mol/100g表示)的多少将直接影响它们的水解稳定性。 最简单的环氧乙烯基酯为甲基丙烯酸与双酚A环氧树脂按摩尔比2:1反应而得,其分子化学结构的示意式为: M—E—M 式中:M代表甲基丙烯酸 E代表E型环氧树脂 如果E取平均分子量为392的E-51,则上述分子结构的环氧乙烯基酯的平均分子量为564。由于分子中平均含有二个酯基,故其平均酯基当量为282,即平均每282g环氧乙烯基酯中含有1摩尔酯基,或换算成平均酯基密度为0.355mol/100g。 目前我国市场上最常见的环氧乙烯基酯为反丁烯二酸改性的甲基丙烯酸环氧酯,其分子结构示意式为: M—E—F—E—M 式中F代表反丁烯二酸,M和E的含义同上。 如果参与反应的环氧树脂也为E-51,则该MFE型环氧乙烯基酯的平均分子量为1072,由于该分子结构中含有四个酯基,故该环氧乙烯基酯的平均酯基当量为268,换算成平均酯基密度为0.373mol/100g,比上述最简单的ME型环氧乙烯基酯的酯基密度高出5%。 以此类推可以计算出由D-33与反丁烯二酸按摩尔比1:1合成的双酚A型不饱和聚酯的平均酯基密度为0.472mol/100g,由丙二醇、顺酐、苯酐按摩尔比2:1:1合成的邻苯型191树脂的平均酯基密度为1.105mol/100g。 由上述计算结果可见,MFE型环氧乙烯基酯树脂的酯基密度约为邻苯型191聚酯的1/3,但实验事实表明(6),MFE型环氧乙烯基酯树脂的水解稳定性优于邻苯型191树脂的远远超过3倍,这就告诉我们分子结构中的酯基密度不是影响水解稳定性的唯一因素,也不是主要因素。 (2) 酯基相邻基团的空间保护作用 有机化学告诉我们:酯基在酸或碱催化下可发生下列水解反应: ① 酸式水解: ② 碱式水解: 酯基的相邻基团R和R’都对酯基的水解速度产生影响,其中尤以R的影响更为明显。 据报道(7),乙酸乙酯在20℃水中的碱式水解速率常数k0=4.8l/mol?min,而与其同系的相差一个次甲基的丙酸乙酯在20℃水中的碱式水解速率常数k1=2.3l/mol?min,后者的水解速率常数约为前者的1/2。以此结果延伸到甲基丙烯酸环氧酯(ME型)与丙烯酸环氧酯(AE型)的水解稳定性对比上,无疑前者的水解稳定性要优于后者,但必须指出的是,无论ME型抑或AE型环氧乙烯基酯,它们在固化前的水解稳定性都是很差的,玻璃钢行业的同仁都有这样一个共识,只有当树脂(环氧乙烯基酯树脂也不例外)充分交联固化后,它们的优秀性能(包括物理性能、耐化学品性能)才显现出来。 因此笔者认为:环氧乙烯基酯分子结构中酯基相邻的可交联双键,在苯乙烯参与下固化形成三维交联网络,它对酯基形成的空间保护作用才是环氧乙烯基酯树脂获得高的水解稳定性的最主要原因(6)。如图2所示:固化后受空间网络大分子保护的基团。 (3) 交联剂苯乙烯的含量 与不饱和聚酯一样,环氧乙烯基酯最常用交联剂和稀释剂仍是苯乙烯,它的含量通常占环氧乙烯基酯树脂总量的40%左右。由于苯乙烯及其聚合物对水解作用的惰性,因此它的存在和含量最直接的作用是降低了环氧乙烯基酯树脂中的酯基密度。此外,当它以聚苯乙烯链段的形式参与环氧乙烯基酯树脂固化交联成三维网络后,对树脂浇铸体的耐热性、力学性能和耐水解稳定性都起到重要作用。 总之,环氧乙烯基酯树脂固化网络的水解稳定性不能单纯以组成网络的环氧乙烯基酯的化学组成来判断,必须同时考虑到由苯乙烯链段参与的固化网络的分子结构对耐水性的影响。 再来回顾一下历史,由最初开发成功的商品树脂,即以甲基丙烯酸与E型环氧树脂按摩尔比2:1合成的ME型环氧乙烯基酯树脂,至今已有三十余年。三十多年来商品树脂品种不断增加,各种改性树脂相继出现。反丁烯二酸改性的MFE型环氧乙烯基酯树脂和以丙烯酸代替甲基丙烯酸合成的AE型环氧乙烯基酯树脂3200#早在上世纪八十年代初期我国已开始商品化生产(8)。AE型环氧乙烯基酯树脂虽然在化学结构上缺少α-甲基对相邻酯基的空间保护作用,但只要苯乙烯用量得当,形成的网络结构合理,同样可以具有,甚至超过某些ME型环氧乙烯基酯树脂所具有的高度的水解稳定性,这一点已为多年来应用实践所证实。 华昌聚合物有限公司近期推出的高韧性、低收缩型MFE-5乙烯基酯树脂属AE型乙烯基酯树脂,但它却具有极佳的水解稳定性。试验结果表明,MFE-5乙烯基酯树脂浇铸体在80~100℃下浸泡于10%NaOH中历时2个月,其外观不变、透明度不变,仅轻微失重(9)。说明该树脂具有优良的耐碱性。 3. 分子结构与物理力学性能 乙烯基酯经固化交联后形成三维网状结构,影响网状结构韧性的因素为交联密度和交联点间分子链段的柔韧性。 交联密度与树脂分子的双键密度由直接关系,以ME型乙烯基酯树脂分子的双键密度为例,如果仍以参与分子组成的环氧树脂为E-51计算,由于每一分子中含有二个双键,即平均每564gME乙烯基酯含有2摩尔双键,故其分子的平均双键密度为0.355mol/100g。MFE型乙烯基酯树脂的每一分子含有三个双键,即平均每1072gMFE乙烯基酯含有3摩尔双键,可计算出其分子的平均双键密度为0.280mol/100g,比ME型乙烯基酯分子的平均双键密度降低了27%。由此可见MFE型乙烯基酯分子固化后形成三维网状结构并非如某些人所说的存在高交联密度,相反比ME型乙烯基酯交联密度低。 影响乙烯基酯树脂固化网络韧性的另一个重要因素为网络交联点间分子链段的柔韧性。众所周知丙烯酸及其酯在化工行业中被称为软单体,而甲基丙烯酸及其酯则被称为硬单体。这是由于丙烯酸酯聚合后主链可自由旋转,而甲基丙烯酸酯聚合后由于α-甲基的空间位阻,使分子主链的内旋转受到阻滞。 由此可见,AE型乙烯基酯树脂的浇铸体一般地较ME型乙烯基酯树脂具有更好的韧性,但也非绝对如此。与上节讨论水解稳定性时一样,毕竟乙烯基酯树脂的固化网络只是乙烯基酯分子的化学结构,不能完全决定乙烯基酯树脂浇铸体的物性。
‘陆’ 什么是聚酯树脂什么是聚氨酯树脂什么是不饱和树脂
聚酯树脂是不饱和聚酯树脂的简称。不饱和聚酯胶粘剂主要由不饱和聚酯树脂、引发剂、促进剂、填料、触变剂等组成。主链中含有-CH匉CH-双键的一种线型结构(见线型高分子)聚酯树脂,能与烯类单体,如苯乙烯、丙烯酸酯、乙酸乙烯酯等混合后,在引发剂和促进剂的作用下,于常温下聚合成不溶、不熔产物。不饱和聚酯的英文缩写为UP。
主链含—NHCOO—重复结构单元的一类聚合物 。英文缩写PU。由异氰酸酯(单体)与羟基化合物聚合而成。由于含强极性的氨基甲酸酯基,不溶于非极性基团,具有良好的耐油性、韧性、耐磨性、耐老化性和粘合性。用不同原料可制得适应较宽温度范围 (-50~150℃) 的材料 ,包括弹性体、热塑性树脂和热固性树脂。高温下不耐水解,亦不耐碱性介质。
另外还有饱和的聚酯树脂如可乐饮料瓶使用的PET,PBT。是热塑性塑料。
‘柒’ 润滑油基础油分为五类,这五类各有什么区别和优点
润滑油基础油分为I类基础油、II类基础油、III类基础油、IV类基础油、V类基础油五类。
I类基础油在性能上会受到限制,II类基础油杂质少(芳烃含量小于10%),饱和烃含量高,热安定性和抗氧性好,低温和烟炱分散性能均优于I类基础油。
III类基础油在性能上远远超过I类基础油和II类基础油,尤其是具有很高的黏度指数和很低的挥发性。某些III类油的性能可与聚α-烯烃(PAO)相媲美,其价格却比合成油便宜得多。
IV类基础油与矿物油相比,无S、P和金属,由于不含蜡,所以倾点极低,通常在-40℃以下,黏度指数一般超过140。但PAO边界润滑性差。V类基础油则主要是其他合成基础油。
区别主要体现在生产工艺的不同:
1、I类基础油的生产过程基本以物理过程为主,不改变烃类结构,生产的基础油质量取决于原料中理想组分的含量和性质。
2、II类基础油是通过组合工艺(溶剂工艺和加氢工艺结合)制得,工艺主要以化学过程为主,不受原料限制,可以改变原来的烃类结构。
3、III类基础油是用全加氢工艺制得,与II类基础油相比,属高黏度指数的加氢基础油,又称作非常规基础油(UCBO)。
4、IV类基础油指的是聚α-烯烃(PAO)合成油。常用的生产方法有石蜡分解法和乙烯聚合法。PAO依聚合度不同可分为低聚合度、中聚合度、高聚合度,分别用来调制不同的油品。
另外,由于它本身的极性小,对溶解极性添加剂的能力差,且对橡胶密封有一定的收缩性,但这些问题都可通过添加一定量的酯类得以克服。
5、合成烃类、酯类、硅油、植物油、再生基础油等统称V类基础油。
(7)什么样的酯基具有油性扩展阅读:
酯类油特性:
在一般情况下,油会在两接触面间形成一层连续的油膜。这层油膜起着液态润滑的作用——防止金属与金属间直接接触,从而减少摩擦。
润滑油能否提供液态润滑,取决于能否在两个金属表面上形成不断裂的油膜。当这层油膜在重负的情况下断裂,便会造成阻力和摩擦。
能在其他基础油失效的条件下仍能保持优越的润滑作用,这便是酯类油在临界润滑情况下的优胜之处。
‘捌’ 聚氨酯 是什么
聚胺酯(英语:Polyurethane,IUPAC缩写为PUR,一般缩写为PU),是指主链中含有氨基甲酸酯特征单元的一类高分子材料。
这种高分子材料广泛用于黏合剂,涂层,低速轮胎,垫圈,车垫等工业领域。在日常生活领域聚氨酯被用来制造各种泡沫和塑料海绵。
聚氨酯还被用于制造避孕套(对乳胶避孕套过敏的人适用)和医用器材和材料。由于聚氨酯具有非常低的导热系数,其材料为基础的新型墙体保温材料开始在欧美等西方国家逐步发展成熟。
化学性质:
聚氨酯抗多种酸碱和有机溶剂腐蚀,因此经常被用在橡胶制品在恶劣环境下的替代品。
物理性质:
聚氨酯的力学性能具有很大的可调性。通过控制结晶的硬段和不结晶的软段之间的比例,聚氨酯可以获得不同的力学性能。因此其制品具有耐磨、耐温、密封、隔音、加工性能好、可降解等优异性能。
回收:
聚氨酯材料在自然条件下极难分解,现在广泛采用的处理方法是燃烧法,燃烧后的气体经过水,以溶解其中的NO2等易溶解的有毒物质,在燃烧过程中还会生成氰氢酸(HCN),氰氢酸易溶于水,产生的CN-根有剧毒,所以通过燃烧废气的水要经过特殊处理。