Ⅰ 面部识别的原理是什么
面部识别软件可归入名为生物识别的一大类技术。生物识别技术使用生物信息来验证身份。生物识别背后的理论是:我们的身体包含一些独一无二的特征,可以使用它们将我们与他人区分开。除了面部识别之外,生物识别身份验证方法还包括:
指纹扫描
视网膜扫描
语音识别
面部识别方法有多种,但是通常涉及捕获、分析和对比等一系列步骤,将你的面孔与数据库中存储的图像进行对比。以下是FaceIt 系统用于捕获和对比图像的基本过程:
为了确定某人的身份,面部识别软件将新近捕获的图像与数据库中存储的图像进行对比。
检测——当系统连接到视频监视系统后,识别软件会在摄影机的视野中搜寻面部信息。如果在视野中存在一张面孔,它会在几分之一秒的时间内检测到它。它使用多尺度算法以低分辨率搜索面部图像。(算法是提供一组指令以完成特定任务的一个程序)。系统只有在检测到类似头部的形状后,才切换到高分辨率搜索。
对齐——一旦检测到面部图像,系统会确定头部的位置、大小和姿态。只有在面部与摄像机至少成35度角的情况下,系统才会记录它。
标准化——头部图像经过缩放和旋转,以便能记录和映射到相应的大小和姿态。无论头部的位置如何以及相距摄像机的距离有多远,都可以执行标准化过程。光线不会对标准化过程产生影响。
表示——系统将面部数据转换成一个唯一的代码。通过编码,可以更加容易地将新近捕获的面部数据与存储的面部数据进行比较。
匹配——将新捕获的面部数据与存储的数据进行对比,并(在理想情况下)链接到至少一个已存储的面部图像。
FaceIt面部识别系统的核心是局部特征分析(LFA)算法。这是系统在对面孔进行编码时使用的数学技术。系统对面孔进行测量,并生成一个面纹,即面部的唯一数字代码。在存储了面纹之后,系统会将它与数据库中存储的成千或成百万的面纹数据进行对比。每个面纹都存储为一个84字节的文件。
面部识别系统通过使用面部识别软件,警察可以缩放摄像机画面并拍摄某个面孔。
系统可以用每分钟6000万张面孔的速度对内存中的面纹数据进行匹配,对于硬盘中的面纹数据,每分钟可以匹配1500万张面孔。在进行对比时,系统会用介于1到10之间的一个值来表示对比结果。如果该值大于预先定义的阈值,则宣布找到一个匹配结果。然后,操作人员可以查看被宣布为匹配项的两张照片,确定计算机的工作是否准确。
与其他生物识别技术一样,面部识别被认为是一种会在不远的将来得到广泛使用的技术。在下一节中,我们将介绍它现在的使用情况。FaceIt这样的面部识别软件的主要用户一直是一些执法机构,它们使用这些系统在拥挤的人群中捕获随机出现的面孔。然后,将这些面孔与数据库中犯罪分子的照片进行对比。
除了进行执法和安全监视之外,面部识别软件还有其他几个用途,包括:
消除投票欺诈
取款身份验证
计算机安全
Ⅱ 人脸识别是什么
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
(2)面部识别属于什么生物信息扩展阅读:
好处:
1、安全
你还在担心自己的身份信息被盗用吗?人脸识别技术问世完全解决了这一问题,即使是别人拿到我们的个人信息也无法操作任何与自己的信息有关的事情,如果人脸识别不过关是无法操作的。这样一来在个人信息方面就有了较高的保障,人们也就可以放心使用人脸识别带来的便捷。
2、快速
人脸识别效率高于人工的3-5倍,现在很多超市都开通了人脸识别付款,只要自主扫描的产品就可以通过支付宝的人脸识别成功付款,这样既节省了人力资源也大大提高了办事效率。虽然现在在超市人工付款窗口要大于人脸识别窗口,但是在将来人脸识别一定会完全实现全面的应用。
Ⅲ 什么是人脸识别技术
人脸识别技术是指利用分析比较的计算机技术识别人脸。人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。
人脸识别是指能够识别或验证图像或视频中的主体的身份的技术。首个人脸识别算法诞生于七十年代初 [1,2]。自那以后,它们的准确度已经大幅提升,现在相比于指纹或虹膜识别 [3] 等传统上被认为更加稳健的生物识别方法,人们往往更偏爱人脸识别。
让人脸识别比其它生物识别方法更受欢迎的一大不同之处是人脸识别本质上是非侵入性的。比如,指纹识别需要用户将手指按在传感器上,虹膜识别需要用户与相机靠得很近,语音识别则需要用户大声说话。
相对而言,现代人脸识别系统仅需要用户处于相机的视野内(假设他们与相机的距离也合理)。这使得人脸识别成为了对用户最友好的生物识别方法。
这也意味着人脸识别的潜在应用范围更广,因为它也可被部署在用户不期望与系统合作的环境中,比如监控系统中。人脸识别的其它常见应用还包括访问控制、欺诈检测、身份认证和社交媒体。
(3)面部识别属于什么生物信息扩展阅读
最新的人脸识别技术,不仅能够指示性别与估计年龄,还能够辨别个人的面部表情。由于它属于人工智能与深度学习的范畴,随着技术的进一步发展,经解读与分析而得出关涉隐私的信息,可想而知会越来越多。多到足以为任何个人勾勒准确的用户画像。
人们对人脸识别技术的普遍接受,要么是基于一厢情愿的盲目乐观,要么是选择性地无视或低估风险的结果。总而言之,就是在信息匮乏的情况下,做出了有失偏颇的判断。这也正是人脸识别技术一直未成为公共话题的重要原因。
Ⅳ 人脸识别技术是什么时候发明的、
人脸识别最初在20世纪60年代已经有研究人员开始研究,真正进入初级的应用阶段是在90年代后期,发展至今其技术成熟度已经达到较高的程度。整个发展过程可以分为机械识别、半自动化识别、非接触式识别及互联网应用阶段。
人脸识别技术是指利用分析比较的计算机技术识别人脸。人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。
人脸识别技术属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。
人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流 . 首先判断其是否存在人脸 , 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。
广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。
生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
功能模块
人脸捕获与跟踪功能
人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。
人脸识别比对
人脸识别分核实式和搜索式二种比对模式。核实式是对指将捕获得到的人像或是指定的人像与数据库中已登记的某一对像作比对核实确定其是否为同一人。搜索式的比对是指,从数据库中已登记的所有人像中搜索查找是否有指定的人像存在。
人脸的建模与检索
可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,最终将根据所比对的相似值列出最相似的人员列表。
真人鉴别功能
系统可以识别得出摄像头前的人是一个真正的人还是一幅照片。以此杜绝使用者用照片作假。此项技术需要使用者作脸部表情的配合动作。
图像质量检测
图像质量的好坏直接影响到识别的效果,图像质量的检测功能能对即将进行比对的照片进行图像质量评估,并给出相应的建议值来辅助识别。
Ⅳ 人脸识别是靠什么识别的呢
不同品牌机型采用的面部识别技术方案不同,面部识别效果也会不一样;目前vivo/iQOO系列手机,仅NEX双屏版采用3D人脸识别技术,其余机型均采用Face Wake面部识别,通过识别面部特征点,与录入信息进行匹配从而实现解锁。
注:3D人脸识别技术介绍:3D人脸识别技术能实现面部信息的立体捕捉,通过识别面部的立体特征,降低误识别的可能性,可带来更准确安全的识别。