‘壹’ 人脸识别的发展历史是怎样的
人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术方法等方面的特点大体划分为三个时间阶段,如表1所示。该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍:
第一阶段(1964年~1990年)
这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometricfeature based)的方法。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于1973年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。
第二阶段(1991年~1997年)
这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了着名的FERET人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为着名的Visionics(现为Identix)的FaceIt系统。
美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特兰德(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(NormalizedCorrelation)方法一道成为人脸识别的性能测试基准算法。
这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥(Poggio)于1992年左右做的一个对比实验,他们对比了基于结构特征的方法与基于模板匹配的方法的识别性能,并给出了一个比较确定的结论:模板匹配的方法优于基于特征的方法。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别方法研究,并在很大程度上促进了基于表观(Appearance-based)的线性子空间建模和基于统计模式识别技术的人脸识别方法的发展,使其逐渐成为主流的人脸识别技术。
贝尔胡米尔(Belhumeur)等提出的Fisherface人脸识别方法是这一时期的另一重要成果。该方法首先采用主成分分析(PrincipalComponent Analysis,PCA,亦即特征脸)对图像表观特征进行降维。在此基础上,采用线性判别分析(LinearDiscriminant Analysis, LDA)的方法变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。该方法目前仍然是主流的人脸识别方法之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的LDA判别方法以及近期的一些基于核学习的改进策略。
麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别方法。该方法通过“作差法”,将两幅人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的方法来进行人脸识别。
人脸识别中的另一种重要方法——弹性图匹配技术(Elastic GraphMatching,EGM) 也是在这一阶段提出的。其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征——Gabor变换[12]特征,称为Jet;边的属性则为不同特征点之间的几何关系。对任意输入人脸图像,弹性图匹配通过一种优化搜索策略来定位预先定义的若干面部关键特征点,同时提取它们的Jet特征,得到输入图像的属性图。最后通过计算其与已知人脸属性图的相似度来完成识别过程。该方法的优点是既保留了面部的全局结构特征,也对人脸的关键局部特征进行了建模。近来还出现了一些对该方法的扩展。
局部特征分析技术是由洛克菲勒大学(RockefellerUniversity)的艾提克(Atick)等人提出的。LFA在本质上是一种基于统计的低维对象描述方法,与只能提取全局特征而且不能保留局部拓扑结构的PCA相比,LFA在全局PCA描述的基础上提取的特征是局部的,并能够同时保留全局拓扑信息,从而具有更佳的描述和判别能力。LFA技术已商业化为着名的FaceIt系统,因此后期没有发表新的学术进展。
由美国国防部反毒品技术发展计划办公室资助的FERET项目无疑是该阶段内的一个至关重要的事件。FERET项目的目标是要开发能够为安全、情报和执法部门使用的AFR技术。该项目包括三部分内容:资助若干项人脸识别研究、创建FERET人脸图像数据库、组织FERET人脸识别性能评测。该项目分别于1994年,1995年和1996年组织了3次人脸识别评测,几种最知名的人脸识别算法都参加了测试,极大地促进了这些算法的改进和实用化。该测试的另一个重要贡献是给出了人脸识别的进一步发展方向:光照、姿态等非理想采集条件下的人脸识别问题逐渐成为热点的研究方向。
柔性模型(Flexible Models)——包括主动形状模型(ASM)和主动表观模型(AAM)是这一时期内在人脸建模方面的一个重要贡献。ASM/AAM将人脸描述为2D形状和纹理两个分离的部分,分别用统计的方法进行建模(PCA),然后再进一步通过PCA将二者融合起来对人脸进行统计建模。柔性模型具有良好的人脸合成能力,可以采用基于合成的图像分析技术来对人脸图像进行特征提取与建模。柔性模型目前已被广泛用于人脸特征对准(FaceAlignment)和识别中,并出现了很多的改进模型。
总体而言,这一阶段的人脸识别技术发展非常迅速,所提出的算法在较理想图像采集条件、对象配合、中小规模正面人脸数据库上达到了非常好的性能,也因此出现了若干知名的人脸识别商业公司。从技术方案上看, 2D人脸图像线性子空间判别分析、统计表观模型、统计模式识别方法是这一阶段内的主流技术。
第三阶段(1998年~现在)
FERET’96人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。因此,光照、姿态问题逐渐成为研究热点。与此同时,人脸识别的商业系统进一步发展。为此,美国军方在FERET测试的基础上分别于2000年和2002年组织了两次商业系统评测。
基奥盖蒂斯(Georghiades)等人提出的基于光照锥 (Illumination Cones) 模型的多姿态、多光照条件人脸识别方法是这一时期的重要成果之一,他们证明了一个重要结论:同一人脸在同一视角、不同光照条件下的所有图像在图像空间中形成一个凸锥——即光照锥。为了能够从少量未知光照条件的人脸图像中计算光照锥,他们还对传统的光度立体视觉方法进行了扩展,能够在朗博模型、凸表面和远点光源假设条件下,根据未知光照条件的7幅同一视点图像恢复物体的3D形状和表面点的表面反射系数(传统光度立体视觉能够根据给定的3幅已知光照条件的图像恢复物体表面的法向量方向),从而可以容易地合成该视角下任意光照条件的图像,完成光照锥的计算。识别则通过计算输入图像到每个光照锥的距离来完成。
以支持向量机为代表的统计学习理论也在这一时期内被应用到了人脸识别与确认中来。支持向量机是一个两类分类器,而人脸识别则是一个多类问题。通常有三种策略解决这个问题,即:类内差/类间差法、一对多法(one-to-rest)和一对一法(one-to-one)。
布兰兹(Blanz)和维特(Vetter)等提出的基于3D变形(3D Morphable Model)模型的多姿态、多光照条件人脸图像分析与识别方法是这一阶段内一项开创性的工作。该方法在本质上属于基于合成的分析技术,其主要贡献在于它在3D形状和纹理统计变形模型(类似于2D时候的AAM)的基础上,同时还采用图形学模拟的方法对图像采集过程的透视投影和光照模型参数进行建模,从而可以使得人脸形状和纹理等人脸内部属性与摄像机配置、光照情况等外部参数完全分开,更加有利于人脸图像的分析与识别。Blanz的实验表明,该方法在CMU-PIE(多姿态、光照和表情)人脸库和FERET多姿态人脸库上都达到了相当高的识别率,证明了该方法的有效性。
2001年的国际计算机视觉大会(ICCV)上,康柏研究院的研究员维奥拉(Viola)和琼斯(Jones)展示了他们的一个基于简单矩形特征和AdaBoost的实时人脸检测系统,在CIF格式上检测准正面人脸的速度达到了每秒15帧以上。该方法的主要贡献包括:1)用可以快速计算的简单矩形特征作为人脸图像特征;2)基于AdaBoost将大量弱分类器进行组合形成强分类器的学习方法;3)采用了级联(Cascade)技术提高检测速度。目前,基于这种人脸/非人脸学习的策略已经能够实现准实时的多姿态人脸检测与跟踪。这为后端的人脸识别提供了良好的基础。
沙苏哈(Shashua)等于2001年提出了一种基于商图像[13]的人脸图像识别与绘制技术。该技术是一种基于特定对象类图像集合学习的绘制技术,能够根据训练集合中的少量不同光照的图像,合成任意输入人脸图像在各种光照条件下的合成图像。基于此,沙苏哈等还给出了对各种光照条件不变的人脸签名(Signature)图像的定义,可以用于光照不变的人脸识别,实验表明了其有效性。
巴斯里(Basri)和雅各布(Jacobs)则利用球面谐波(Spherical Harmonics)表示光照、用卷积过程描述朗博反射的方法解析地证明了一个重要的结论:由任意远点光源获得的所有朗博反射函数的集合形成一个线性子空间。这意味着一个凸的朗博表面物体在各种光照条件下的图像集合可以用一个低维的线性子空间来近似。这不仅与先前的光照统计建模方法的经验实验结果相吻合,更进一步从理论上促进了线性子空间对象识别方法的发展。而且,这使得用凸优化方法来强制光照函数非负成为可能,为光照问题的解决提供了重要思路。
FERET项目之后,涌现了若干人脸识别商业系统。美国国防部有关部门进一步组织了针对人脸识别商业系统的评测FRVT,至今已经举办了两次:FRVT2000和FRVT2002。这两次测试一方面对知名的人脸识别系统进行了性能比较,例如FRVT2002测试就表明Cognitec, Identix和Eyematic三个商业产品遥遥领先于其他系统,而它们之间的差别不大。另一方面则全面总结了人脸识别技术发展的现状:较理想条件下(正面签证照),针对37437人121,589 幅图像的人脸识别(Identification)最高首选识别率为73%,人脸验证(Verification)的等错误率(EER[14])大约为6%。FRVT测试的另一个重要贡献是还进一步指出了目前的人脸识别算法亟待解决的若干问题。例如,FRVT2002测试就表明:目前的人脸识别商业系统的性能仍然对于室内外光照变化、姿态、时间跨度等变化条件非常敏感,大规模人脸库上的有效识别问题也很严重,这些问题都仍然需要进一步的努力。
总体而言,目前非理想成像条件下(尤其是光照和姿态)、对象不配合、大规模人脸数据库上的人脸识别问题逐渐成为研究的热点问题。而非线性建模方法、统计学习理论、基于Boosting[15]的学习技术、基于3D模型的人脸建模与识别方法等逐渐成为备受重视的技术发展趋势。
总而言之, 人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用。这些成果更加深了我们对于自动人脸识别这个问题的理解,尤其是对其挑战性的认识。尽管在海量人脸数据比对速度甚至精度方面,现有的自动人脸识别系统可能已经超过了人类,但对于复杂变化条件下的一般人脸识别问题,自动人脸识别系统的鲁棒性和准确度还远不及人类。这种差距产生的本质原因现在还不得而知,毕竟我们对于人类自身的视觉系统的认识还十分肤浅。但从模式识别和计算机视觉等学科的角度判断,这既可能意味着我们尚未找到对面部信息进行合理采样的有效传感器(考虑单目摄像机与人类双眼系统的差别),更可能意味着我们采用了不合适的人脸建模方法(人脸的内部表示问题),还有可能意味着我们并没有认识到自动人脸识别技术所能够达到的极限精度。但无论如何,赋予计算设备与人类似的人脸识别能力是众多该领域研究人员的梦想。相信随着研究的继续深入,我们的认识应该能够更加准确地逼近这些问题的正确答案。
‘贰’ 有谁知道银行里人脸识别是从哪一年开始使用的
咨询记录 · 回答于2021-09-20
‘叁’ 手机刷脸用的最早是哪个手机
近日,苹果公司推出的新款手机iPhone X以“刷脸解锁”取代了“指纹解锁”,成为了热议的话题:手机的“刷脸解锁”时代就要来了?
其实,所谓“刷脸”,也就是“人脸识别”技术其实早已不是什么新鲜事了,且不说之前就曾有好几款手机用过,就算是在别的很多领域,也都被广泛应用,比如学校宿舍的刷脸进门……
而且很多电商的实体店也已经开始了测试刷脸支付功能,通过扫描用户面部信息,单次交易仅需2秒左右,方便快捷。就在几天前,杭州一肯德基餐厅也宣布可以“刷脸支付”了,还有很多火车站实现了“刷脸进站”……“刷脸”应用呈爆发式增长。
但不少人对该技术的安全性提出质疑:会不会更多信息被泄露?会不会发生盗“脸”取款?也有网友着急地问:照片是不是能够用来解锁?整容了怎么办?卸妆后还能解锁吗?那么,今天小编就来跟大家说说,关于“人脸识别”的这些疑问。
‘肆’ 人脸识别哪年发明的
1.人脸识别技术是什么时候发明的、
人脸识别的研究历史比较悠久。
高尔顿
(Galton)
早在
1888
年和
1910
年就分别
在
《
Nature
》
杂志发表了两篇关于利用人脸进行身份识别的文章,
对人类自身的
人脸识别能力进行了分析。但当时还不可能涉及到人脸的自动识别问
题。最早
的
AFR1
的研究论文见于
1965
年陈(
Chan
)和布莱索(
Bledsoe
)在
Panoramic
Research Inc.
发表的技术报告,至今已有四十年的历史。近年来,人脸识别研
究得到了诸多研究人员的青睐,涌现出了诸多技术方法。尤其是
1990
年以来,
人脸识别更得到了长足的发展。几乎所有知名的理工科大学和主要
IT
2.人脸识别哪年发明的
人脸识别最早是应用于安防领域。
2001年,公安部门就开始利用人脸识别技术来防范和打击重大刑事犯罪,并且取得了国家的支持。2008年,在北京奥运会举办时,大量应用到了人脸识别技术,这一阶段标志着我国的人脸识别技术的应用进入规模化。
2010年,上海世博会,该技术得到了更加广泛的应用,同时各大公司争相加入这一技术的阵营,实现了人脸识别在中国的大规模应用。随着技术的不断成熟发展,这两年人脸识别在国内的发展相信大家也有目共睹。
刷脸吃饭、刷脸取款、刷脸登机、新生刷脸报道等等等等琳琅满目的应用相继落地,我们可以感受到,这一技术已经开始深入我们的日常生活了。
3.人脸识别技术什么时候开始在中国运用的
人脸识别,一种基于人的脸部特征信息进行身份认证的生物特征识别技术。
近年来,随着欧美发达国家人脸识别技术开始进入实用阶段后,人脸识别迅速成为近年来全球的一个市场热点,它具有如下显着优点: ·非接触,智能交互,用户接受程度高。 ·直观性突出,符合人“以貌识人”的认知规律。
·适应性强,不易仿冒,安全性好。 ·摄像头的大量普及,易于推广使用。
综上所述,人脸识别被人们称为最自然、最直观的一种生物特征识别技术。可以广泛应用于公安、安全、海关、金融、军队、机场、边防口岸、安防等多个重要行业及领域,以及智能门禁、门锁、考勤、手机、数码相机、智能玩具等民用市场,具有广阔的市场应用前景。
目前的人脸识别技术,分为二维人脸识别、三维人脸识别两大类。二维人脸识别是基于人脸平面图像的,但实际上人脸本身是三维的,人脸平面图像只是三维人脸在一个平面上的投影,在这个过程中,必然会丢失一部分信息,因此,二维人脸识别性能的进一步提升,一直受到环境光线、姿态、表情等因素的不利影响。
三维人脸识别是基于三维人脸图像的,从理论上讲具备一些三维图像信息的技术优势,但一直存在采集设备昂贵,采集系统复杂,存储度高,人脸重建算法很复杂,识别速度较慢等缺点。 汉王科技,凭借十几年扎根模式识别领域的底蕴,早在2003年,就瞄准人脸识别技术的国际前沿,积极开展人脸识别技术的潜心研究,五年磨一剑,现在我们拥有完全自主知识产权的“双目立体”人脸识别算法。
4.人脸识别是靠什么技术实现的
人脸识别门禁技术如今已渐趋成熟,曾经很多企业、社区、景区、工地所依赖的指纹识别门禁、门禁卡门禁、密码锁门禁如今正被人脸识别门禁所取代,为各行业领域带来了极大的便捷。但人脸识别技术作为一种新兴的人员身份鉴别技术,大部分人对于这项技术还是相对陌生,关于与人脸识别相关的问题也时有发生,为了让大家快速学会使用人脸识别门禁系统,今天宝比万像人脸识别就来教大家如何学会人脸识别门禁的人脸信息录入使用。
启动设备
1.默认打开宝比万像人脸识别门禁考勤设备端APP,进入“宝比万像人脸识别门禁考勤系统设备端APP”启动页
2.默认进入人脸认证页面。
3.在人脸认证界面,点击“首页”按钮,返回人脸设备主菜单。
人脸验证
1.在人脸识别主界面点击“人脸认证”菜单进行人脸验证
2.人脸认证:通过认证,闸门开启,并显示人脸ID,姓名。
3.人脸认证:没有登记的人脸进行验证,提示“人脸无登记”。
人脸登记
1.在人脸识别主界面点击“人脸登记+”,弹出登录界面。
2.输入登录账号、密码(xxxxxx),点击登录。
3.输入姓名,点击下一步,跳转到人脸登记界面。
4.人脸登记初始化页面。提示登记这,请面对摄像头。
5.人脸登记:拍摄成功后“确认注册”,提升“人脸登记成功”。
6.点解“重新获取”,即对需要登记的人脸进行重新拍摄登记。
7.已登记成功的用户,再次进行人脸登记,则提示;已登记。
8.点击当前页面的返回剪头,即返回到人脸识别设备APP首页。
‘伍’ 人脸识别是什么时候兴起的啊
人脸识别设备的广泛应用确切地说是从18年
‘陆’ 手机上的人脸识别功能是什么意思
自动检测人脸,然后以人脸位置为对焦窗口,这样的结果使对焦更智能化,人物照更清晰。
1、人脸识别的原理:
是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
2、人脸识别的发展历史:
人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主。
人脸识别系统成功的关键在于是否拥有尖端的核心算法,并使识别结果具有实用化的识别率和识别速度,“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术。
同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。
(6)面部识别什么时候开始应用扩展阅读:
人脸图像特征提取:
人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。
人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成。
对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
‘柒’ 抖音认证要人脸识别是什么时候开始的
2016年9月开始的。进去实名认证之后,可以人脸识别进行认证也可以选择人工审核认证。
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
2021年7月28日,《最高人民法院关于审理使用人脸识别技术处理个人信息相关民事案件适用法律若干问题的规定》正式对外发布。
抖音App是一款社交类的软件,通过抖音短视频App你可以分享你的生活,同时也可以在这里认识到更多朋友,了解各种奇闻趣事。
抖音实质上是一个专注年轻人的音乐短视频社区,用户可以选择歌曲,配以短视频,形成自己的作品。它与小咖秀类似,但不同的是,抖音用户可以通过视频拍摄快慢、视频编辑、特效(反复、闪一下、慢镜头)等技术让视频更具创造性,而不是简单的对嘴型。
‘捌’ 人脸识别
人脸识别是什么?人脸识别特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。
广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。
生物特征识别技术所研究的生物特征包括人脸、指纹、手掌纹、掌型、虹膜、视网膜、静脉、声音(语音)、体形、红外温谱、耳型、气味、个人习惯(例如敲击键盘的力度和频率、签字、步态)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、静脉识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
‘玖’ 人脸识别的发展历程是什么
【人脸识别发展历史】
人脸识别系统的研究始于20世纪60年代,在90年后期,并且以美国、德国和日本的技术实现为主。在中国的发展起步于上世纪九十年代末,“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,经历了技术引进-专业市场导入-技术完善-技术应用-各行业领域使用等五个阶段。
其核心技术的实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。
人脸识别与其他生物识别的对比
【脸识别技术特点】
第一:三维人脸识别技术是发展主流
二维人脸识别系统在人脸左右偏转达到40度识别率迅速下降到50%以下,从人脸识别技术发展过程来看,未来三维人脸识别是人脸识别主要技术手段。二维人脸识别只是人脸识别发展的过渡阶段。实验结果显示,而采用三维人脸识别后,识别率可以提高至少10-20个百分点。
第二:人脸识别技术具有非侵犯性
不同的生物识别技术在细分技术上各具优势,人脸识别是生物特征识别技术的一个重要方向,人脸识别技术是非接触和不需要主动接受的,具有非侵犯性。
此外,图像采集可以由安防中的摄像头完成,人们对这种技术的排斥心理最小,因此人脸识别技术是一种最友好的生物特征识别技术,不需要重新再布置新的采集设备。
希望本篇回答可以帮助到你~
望采纳~
‘拾’ 人脸识别密码技术是什么时候开始的
人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主。
而在近些年才真正开始广泛应用。人脸识别技术依赖于算法研究,近年来不少新兴公司出现并开创了自己的算法,推动了行业的快速发展。这意味着人脸技术将逐渐趋于成熟。