Ⅰ 智能人脸识别技术和面部识别的区别
智能人脸识别技术又叫做人像识别、面部识别,主要是将人的面部特征区分成不同的点,然后通过识别这些点将其关联起来形成一张立体三维的图,最终识别出人脸特征,判断出这个人是谁,是什么身份,来自于哪里。
Ⅱ 人脸识别和人脸检测有什么不同
检测是判断是不是人脸,识别是判断这个人是谁
识别是否准确,不同公司sdk的阈值高低不一,所以识别率不一样
比如我们公司现在正在用的虹软公司的sdk就是这样
Ⅲ 人脸识别 跟人脸检测有什么区别请高手说区别。 谢谢
人脸识别是指将一个需要识别的脸,和训练库中的某个人脸对应起来,类似指纹识别一样的东西,完成识别功能。
而人脸检测则是在一张图片上把人脸寻找出来,完成的是寻找人脸的功能。
Ⅳ 面部识别的原理是什么
面部识别软件可归入名为生物识别的一大类技术。生物识别技术使用生物信息来验证身份。生物识别背后的理论是:我们的身体包含一些独一无二的特征,可以使用它们将我们与他人区分开。除了面部识别之外,生物识别身份验证方法还包括:
指纹扫描
视网膜扫描
语音识别
面部识别方法有多种,但是通常涉及捕获、分析和对比等一系列步骤,将你的面孔与数据库中存储的图像进行对比。以下是FaceIt 系统用于捕获和对比图像的基本过程:
为了确定某人的身份,面部识别软件将新近捕获的图像与数据库中存储的图像进行对比。
检测——当系统连接到视频监视系统后,识别软件会在摄影机的视野中搜寻面部信息。如果在视野中存在一张面孔,它会在几分之一秒的时间内检测到它。它使用多尺度算法以低分辨率搜索面部图像。(算法是提供一组指令以完成特定任务的一个程序)。系统只有在检测到类似头部的形状后,才切换到高分辨率搜索。
对齐——一旦检测到面部图像,系统会确定头部的位置、大小和姿态。只有在面部与摄像机至少成35度角的情况下,系统才会记录它。
标准化——头部图像经过缩放和旋转,以便能记录和映射到相应的大小和姿态。无论头部的位置如何以及相距摄像机的距离有多远,都可以执行标准化过程。光线不会对标准化过程产生影响。
表示——系统将面部数据转换成一个唯一的代码。通过编码,可以更加容易地将新近捕获的面部数据与存储的面部数据进行比较。
匹配——将新捕获的面部数据与存储的数据进行对比,并(在理想情况下)链接到至少一个已存储的面部图像。
FaceIt面部识别系统的核心是局部特征分析(LFA)算法。这是系统在对面孔进行编码时使用的数学技术。系统对面孔进行测量,并生成一个面纹,即面部的唯一数字代码。在存储了面纹之后,系统会将它与数据库中存储的成千或成百万的面纹数据进行对比。每个面纹都存储为一个84字节的文件。
面部识别系统通过使用面部识别软件,警察可以缩放摄像机画面并拍摄某个面孔。
系统可以用每分钟6000万张面孔的速度对内存中的面纹数据进行匹配,对于硬盘中的面纹数据,每分钟可以匹配1500万张面孔。在进行对比时,系统会用介于1到10之间的一个值来表示对比结果。如果该值大于预先定义的阈值,则宣布找到一个匹配结果。然后,操作人员可以查看被宣布为匹配项的两张照片,确定计算机的工作是否准确。
与其他生物识别技术一样,面部识别被认为是一种会在不远的将来得到广泛使用的技术。在下一节中,我们将介绍它现在的使用情况。FaceIt这样的面部识别软件的主要用户一直是一些执法机构,它们使用这些系统在拥挤的人群中捕获随机出现的面孔。然后,将这些面孔与数据库中犯罪分子的照片进行对比。
除了进行执法和安全监视之外,面部识别软件还有其他几个用途,包括:
消除投票欺诈
取款身份验证
计算机安全
Ⅳ 刷脸技术与其他生物识别技术的区别
刷脸技术与其他生物识别技术的区别? 随着算法的完善,生物识别技术已获得重大突破,在越来越多的领域不断跨越用户接受的门槛,其市场呈快速爆发之势。其中,人脸识别的国内市场规模在未来五年有望达到千亿级别。生物识别是指通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性来进行个人身份鉴定技术。与传统的密码检验方式相比,生物识别技术基于人的生物特性,具有易测量、排他性以及终身不变的特点,拥有检验快速、结果更准确的优势。目前主流的生物识别方式分别为指纹识别、虹膜识别、语音识别、静脉识别和人脸识别。人脸识别与其他生物识别方式相比,优势在于自然性、不被察觉性等特点。自然性即该识别方式同人类进行个体识别时所利用的生物特征相同。指纹识别、虹膜识别等均不具有自然性。不被察觉的特点使该识别方法不易使人抵触,而指纹识别或虹膜识别需利用电子压力传感器或红外线采集指纹、虹膜图像,在采集过程中体验感不佳。目前人脸识别需要解决的难题是在不同场景、脸部遮挡等应用时如何保证识别率。此外,隐私性和安全性也是值得考虑的问题。
图表1:五种生物识别技术性能对比
人脸识别优势明显,未来将成为识别主导技术。相比指纹识别、虹膜识别等传统的生物识别方式,优点主要还集中在四点:非接触性、非侵扰性、硬件基础完善和采集快捷便利,可拓展性好。在复杂环境下,人脸识别精度问题得到解决后,我们预计人脸识别有望快速替代指纹识别成为市场大规模应用的主流识别技术。
图表2:人脸识别的优势
人脸识别按照识别方式应用的不同主要分为1:1、1:N和M:N三种模式:
图表3:人脸识别三种不同的识别模式
Ⅵ 人脸检测与人脸识别有什么不同
人脸检测就是在一副图像或一序列图像(比如视频)中判断是否有人脸,若有则返回人脸的大小、位置等信息。人脸识别则是在假设图像或者图像序列中有人脸的情况下,根据人脸的特征判断人的身份等信息。在早期,人脸检测是作为人脸识别的一个过程出现的。但现在人脸检测的应用范围已经远远超出了人脸识别,人脸检测在数码相机,监控网络,机器视觉、模式识别等领域都有重要的实践与理论意义。
参考文献:《人脸识别——原理、方法与技术》,王映辉编,科学出版社;
《Detecting Faces in Images:A Survey》:Ming-Hsuan Yang(杨铭轩),David J. Kriegman,Narendra Ahuja,IEEE Transa on PA and Machine Intelligence
Ⅶ 什么是人脸识别
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
Ⅷ 人脸识别的优点和缺点
优点:
1、非接触性,相比较其他生物识别技术而言,人脸识别是非接触的,用户不需要和设备直接接触。
2、并发性,在实际应用场景中,人脸识别技术可以进行多个人脸的分拣、判断及识别。
3、非强制性,被识别的人脸图像信息可以主动获取而不被被测个体察觉。
4、自然性,所谓的自然性是指通过观察比较人脸来区分和确认身份;具有自然性的识别还有语音识别和体形识别。
缺点:
1、人类脸部存在相似性,不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的。在加上化妆的掩盖及双胞胎的天然相似性更增加了识别的难度。
2、人脸存在易变性,人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大。