导航:首页 > 面部护理 > 煤炭里的角质层怎么做

煤炭里的角质层怎么做

发布时间:2022-07-17 11:44:22

A. 煤炭化验应该掌握哪些知识

煤炭的基础知识,煤炭测试知识,你可看看GB/T483-2007煤炭分析实验的一般规定和具体分析项目的国家标准,

B. 揭示煤炭资源生成的秘密

众所周知,煤是由植物变成的,但怎么证明煤是植物变成的呢?

地质学家在煤层的顶板、底板与煤层中找到了大量的植物化石,还发现了被压扁了的煤化树干,在其横断面上可以看到十分清晰的植物年轮。如果把煤做成薄片在显微镜下观察,还可以看到植物细胞组织的残留痕迹以及孢子、花粉、树脂、角质层等植物遗体。在我国东北着名的抚顺煤矿的煤层中发现有大量的琥珀,有的当中还包裹着完整的昆虫化石。这些琥珀就是由原来的树林分泌的树脂变成的。所有这些都有力地证明了煤是由植物遗体堆积转化而来的。因为煤是由植物演变而成,所以还应当进一步了解植物又是怎样形成与演化的,这对理解煤的生成过程会更深刻。

(一)植物的形成、发展与演化

植物的形成与演化在地球发展历史上经历了一个漫长的时期。地球的诞生距今已有 46 亿年了,经历了不同的发展阶段。46 亿年到 38 亿年期间是地球的天文演化阶段,是地球原始地壳的形成阶段,是特殊的地球早期史时期,从生物演化角度在地质历史上称作冥古宙,迄今了解程度最差,对地球的了解多数只是推测。38 亿到 25 亿年期间是具有明确地史纪录的初始阶段,地质历史上称作太古宙,地球上诞生了生命。关于生命的起源问题,目前仍然处于不断探讨和逐步深入阶段。基本有两种倾向性认识:一种认为是起源于地球自身的演化过程,由无机物 C、H、O、N、S 等元素逐步演化而成;另一种认为生命起源于其他星体,后来才被带到地球上来的。生命出现后,经历了漫长的演变进化,逐渐出现了动植物。在漫长的不同地质历史时期,曾出现过千姿百态的植物,有的已经绝灭了,成为地史上的过客,有的延续至今,一直为我们的地球披着浓重的绿装。古生物学家把植物的演化和发展划分成四个阶段。

1. 菌藻植物阶段

在西澳大利亚 34 亿~ 35 亿年的沉积岩中发现的丝状、链状细胞,可能代表了最早的菌、藻类生物体。25 亿至 5.7 亿年间,地史上称作元古代,经过漫长的生物进化过程,出现了大量的微古植物和叠采石,既有原核生物又有真核生物。在元古代的末期地史上称作震旦纪时期出现了动物,各种藻类进一步发展,有的地区由此而形成了最初的低级煤线层。到了大约 5.7 亿年至 5 亿年间,地史上称作寒武纪,藻类有了更大的发展,不仅在种类上繁多,有蓝藻、红藻和绿藻,而且在数量上更加繁荣,足可以形成一定规模的藻类煤层。

2. 蕨类植物阶段

藻类植物的演化进步,在地史大约4.4亿年的奥陶纪末期出现了蕨类植物;到了4亿~3.5亿年间的志留纪末泥盆纪初,蕨类植物得到了大发展,从海生转到陆生,裸蕨植物是世界上第一个登上陆地的植物群。自晚泥盆世至早二叠世,裸蕨植物的后代壮大发展,出现了石松植物、真蕨植物等,它们开始有明显的根、茎、叶的分化,输导系统进一步发展为管状中柱和网状中柱。有些植物(如种子蕨)具有大型叶,从而扩大了光合作用的面积。晚泥盆世地球上已出现大面积的植物群,乔木型植物比较普遍。石炭纪全球出现了不同的植物地理区,地层中还可发现苏铁、银杏、松柏等裸子植物化石。当时的各种植物在适宜的环境中大量繁殖堆积,形成煤层。中石炭世至早二叠世是全球最重要的成煤时期(图 5-1-1)。

3. 裸子植物阶段

晚二叠世至早白垩世,裸子植物获得空前发展。由于地壳运动加剧,古气候、古地理环境发生明显变化,蕨类植物和早期裸子植物衰减,新生的裸子植物逐渐繁荣起来。它们一般都具有大型羽状复叶,树干高大。在所发现的松柏类化石中,科达树高度可达 20 ~ 30 米,树顶浓密的枝叶组成茂盛、庞大的树冠。这一时期也成为地史上重要的聚煤阶段。

4. 被子植物阶段

在植物界的家族中,被子植物是出现较晚的成员。可靠的被子植物化石见于早白垩世的晚期,到晚白垩世被子植物化石已很普遍,说明它们对陆地环境有很强的适应能力。进一步进化发展,被子植物逐渐开始排挤裸子植物,进入第三纪就占有绝对统治地位了。被子植物已经具有完善的输导组织和支持组织,生理机能大大提高了。今天的被子植物分布极其广泛,无论是寒带还是热带,到处都可以找到被子植物的踪迹,被子植物约有 27 万多种,数量占整个植物界的一半还多。

植物的繁盛,为煤层的形成提供了物质条件,是先决因素。但有了植物不一定就能变成煤。煤的形成是有条件的,是许多地质因素综合作用的结果。既要有适宜的气候,大量植物繁殖的条件;又要有适宜的堆积场所,有很好的覆盖层把它盖起来,处在一个缺氧的还原环境下。所有这些条件缺一不可,而这些条件都是受到地壳运动控制的,大致可从成煤环境和成煤过程两方面来说明。

(二)成煤环境

成煤环境大致由沉积环境即煤盆地的形成与发展、气候、植物等条件构成。

1. 沉积环境即煤盆的形成与发展

群山环绕中间低洼的地貌被称为盆地。盆地是地壳运动的历史产物。地壳运动使地壳结构不断地变化和发展,引起各种各样的地质作用,形成各种各样的地壳变形,控制着地球表面海陆的分布。地壳的某些部分受到强烈的构造运动后形成大规模的褶皱中的沉降带,或者形成与一系列隆起带相间排列的沉降带,或者由断裂构造控制的断陷带,统称构造盆地。还有由侵蚀作用形成的侵蚀洼地,称作侵蚀盆地。构造盆地与侵蚀盆地都是地壳相对下陷的沉积盆地。我们把含有煤线或煤层的沉积盆地称为含煤盆地或成煤盆地。含煤盆地是沉积盆地的一种。在新疆,着名的盆地有塔里木盆地、准噶尔盆地、吐鲁番盆地、伊犁盆地等。由于构造运动的不同而致使盆地类型多种多样。构造盆地大致可分为波状凹陷盆地和断裂凹陷盆地。波状凹陷盆地主要是由震荡为主的运动所造成,其特点是沉降的差异性较小,凹陷盆地的基底连续性较好。断裂凹陷盆地主要是由以间歇沉降为主的运动所造成,沉降运动的差异性比较大,凹陷盆地的基底连续性较差。

波状凹陷盆地内形成的煤及其他沉积层(含煤建造)一般厚度都不大,但比较稳定,常常呈现着自凹陷边缘向中心逐渐增厚的趋势。含煤建造的岩性、岩相和煤层变化也比较少,在大范围内常有一定的变化规律。形成的煤层多以薄煤层和中煤层为主,有时也有厚煤层出现。

断裂凹陷盆地内形成的含煤建造一般岩性、岩相和煤层不稳定,厚度变化比较大,可达数百米至数千米,常形成厚煤层。变化大的原因与凹陷盆地基底的沉降差异有关。如果凹陷盆地的断裂构造比较简单,仅发育凹陷盆地的一侧或两侧,凹陷盆地的基底运动差异比较小,则含煤建造的厚度、岩性、岩相和含煤性变化也不大。如果凹陷盆地的断裂构造比较复杂,不仅发育于凹陷的一侧或两侧,而且在凹陷内部断裂构造的发育也极其复杂,常为一系列的地堑、地垒和各种断块所组成。当凹陷盆地的基底沉降时,由于各个断块沉降不均匀,因而凹陷盆地的基底沉降的差异就比较大,含煤建造的厚度、岩性、岩相和含煤性的变化也就比较大。常常在短距离内就迅速发生变化,煤层层数由几层到数十层,煤层厚度可由几米迅速变化到几十米甚至上百米。煤层的分叉和尖灭现象也很突出,对应煤层的可比性较差(图 5-1-3、图 5-1-4)。

在波状凹陷盆地与断裂凹陷盆地之间往往还存在着一系列的过渡类型,特别是在一些大型的聚煤凹陷盆地多兼有两者的特征。波状凹陷盆地和断裂凹陷盆地在空间的分布上常常结合在一起同时出现,在时间的演变上则相互转化。例如在新疆准噶尔盆地中生代聚煤盆地中,三叠纪和早、中侏罗世含煤建造沉积时,靠近南部天山的山前部分是一个断裂凹陷盆地。但是到了晚侏罗世和白垩纪的地层沉积时,南部的断裂凹陷盆地基本上停止了活动,使原来兼有断裂凹陷和波状凹陷的断裂凹陷盆地,发展成为一个统一的波状凹陷盆地。一般来讲,从盆地边缘到中心成煤的厚度由薄到厚逐渐增加,但由于地壳构造运动的复杂性、不均匀性、时差性,造成聚煤盆地类型的过渡性与多样性,聚煤盆地的中心就发生了迁移变化,形成多个不同的沉积中心,使沉积的煤层厚度也发生了复杂的变化。这种现象不仅在一些大的成煤盆地中有所表现,在一些较小的成煤盆地中也有所显示。比如在大的盆地的中心是一个沉积中心,但随着一侧沉降的较强烈,而另一侧沉降的较缓慢、微弱;或因一侧上升的缓慢、微弱,而另一侧上升的剧烈,沉积中心都向相对沉降较快的一侧迁移,而相对上升的部分较老的沉积物可能遭到剥蚀。还由于在某些盆地的原始基地即盆地的沉积底部初始地形就比较复杂,高低不平,在大盆地内常常形成一些互相隔离的多个小型盆地或谷地;如果又具备了成煤条件,会形成多个聚煤中心,使煤层厚度发生变化(图 5-1-5)。随着沉积的不断进行,致使各个小型盆地填平补齐,构成一个统一大的盆地,形成一个新的统一的沉积中心。由于后来地壳运动的加快,原来多个聚煤小盆地面积不断扩大,形成了更大的统一的聚煤盆地,这也可能形成其上部煤层统一下部分布不连续的多个聚煤中心。聚煤中心的迁移是个多见的现象。在新疆准南煤田,早侏罗纪的聚煤中心在阜康一带,而到了中侏罗纪聚煤中心则向西迁移到乌鲁木齐至玛纳斯一带。一般来说,聚煤中心与沉积中心是一致的,但是由于含煤建造形成时受地壳运动的影响具有分带性,沉积中心随时间的变化具有水平迁移现象。沉积中心的沉降速度大于植物堆积速度时,就会被泥砂所充填,使煤层在沉积中心位置分叉甚至尖灭。而沉积中心的边部沉降速度保持平衡的地方,就是煤层沉积最厚的地方,也就是聚煤中心形成的地方,这样聚煤中心就和沉积中心不一致。

由于成煤后构造运动的影响,使已经形成的含煤盆地发生褶皱、断裂、甚至隆起。褶皱构造常常表现为背斜和向斜,断裂则使煤层或地层发生错位及位移形成断层。因此形成煤的含煤盆地与现在我们看到的沉积盆地面貌不完全一样,有的甚至是翻天覆地的变化(图 5-1-6、图5-1-7、图 5-1-8、图 5-1-9、图 5-1-10、图 5-1-11、图 5-1-12)。

含煤盆地形成后一般又经历了复杂的变化。这是由于,在地质发展历史中,由于内力与外力的作用,组成地壳的岩层不断地进行着改造与建造。地壳构造运动使部分地壳上升,也使另外部分地壳下降。上升部分的地壳岩层不断遭受到风化剥蚀,被流水冲刷,被风吹蚀;下降部分的低洼盆地不断接收沉积。这种旧岩层的不断毁坏和新岩层的不断形成,可能在同一个盆地中反复进行,形成了具有成生联系的沉积岩系即沉积建造。当盆地具有适宜煤生成的气候、植物条件,就形成了含有煤层的具有成生联系的沉积岩系,称其为含煤建造,有人称为煤系地层。含煤建造有浅海相沉积,很少有深海相沉积;有山麓相、冲击相、湖泊相、沼泽相和泥炭沼泽相,很少有冰川、沙漠相沉积;有滨海三角洲相、 湖海湾相、砂咀、砂坝、砂洲相。所以含煤建造可分为近海型含煤建造和内陆型含煤建造。近海型建造可进一步分为浅海型、滨海平原型、狭长海湾型。内陆型含煤建造可细分为内陆冲积平原型、内陆盆地型、内陆山间盆地型。各种类型的含煤建造都有其自身的特点,组成含煤建造的岩相、岩性、含煤性都不一样。我国除一些早古生代生成的含煤建造为海相外,以后的地质时代绝大多数的含煤建造由陆相所组成,或是由陆相、过渡相和浅海相沉积所组成。因此含有陆相沉积,特别是含有沼泽相和泥炭沼泽相沉积,是我国主要含煤建造岩相组成的一个重要特点。新疆的含煤建造几乎没有浅海相沉积,过渡相沉积也很少见。

从各个含煤盆地的含煤建造的不同,也可以看出煤盆地的形成是复杂的。从含煤建造所反映出的古气候、古植物和古地理环境的不同,可以看出成煤的环境有浅海环境,有内陆湖泊及河流三角洲环境,有海湾、 湖、滨海三角洲等海陆二者的过渡环境;成煤盆地大至海盆,到海盆湖泊的过渡,到湖盆,小到山间洼地,大小悬殊,形态各异,多种多样,盆地环境千姿百态。

盆地为煤的生成提供了环境条件,也就是说煤的生成必须要有盆地的形成,但有了盆地不是都可以形成煤。当地壳强烈运动,快速上升部分就会形成高山峻岭,急剧下降部分就会形成汪洋大海、深水湖泊,都不利于煤的沉积形成。只有在地壳运动处于缓慢下降的小幅振荡过程中,在盆地泥炭沼泽接受植物遗体堆积的速度与盆地下降的速度基本平衡,堆积的植物遗体及时补偿、充填了地壳下降造成的空间,使盆地长期保持泥炭沼泽的条件,才利于煤的形成。这种基本平衡的条件持续的时间越长,堆积的泥煤层就越厚,就可以形成很厚的煤层,有的单层煤厚度可达几十米甚至上百米。如果地壳运动下降速度超过了泥炭堆积的速度,盆地的水就会加深,泥炭沼泽的环境就会转化为湖泊或海洋,不宜植物的生长,缺少成煤的物质条件,形不成煤,而形成泥沙、灰岩等沉积物的覆盖层。如果地壳运动上升的速度超过了泥炭沼泽的堆积速度,不仅不能继续进行泥炭的堆积,而且随着上升的进一步加剧,原已堆积的泥炭层发生剥失而形不成煤层。如果上升、相对稳定、下降交替出现,就能形成多层煤层,有的煤盆可形成几十层煤。因此,一个含煤盆地中的煤层的厚薄、煤层的多少与厚薄的变化,都与成煤时的地壳运动有密切的关系。

2. 气候植物环境

成煤环境必须是在盆地或浅海边缘、海湾、 湖、内陆湖泊及河流低洼泥炭的沼泽中(图5-1-13),既有原地生长的植物,又有从盆地外被流水搬运来的异地植物。在这样的环境中,气候要多雨湿润,适宜各类植物及其他生物的大量繁殖生长。成煤要经历上百万年千万年甚至亿年的过程,在地史上是个较短的阶段,但对于人类来讲是个非常漫长的过程。在这样长的时期,大面积茂密的植物只要生生不息,新陈代谢,一万年长盛不衰,一年堆积 0.1 毫米,10 万年就可堆积 100 米,再经历成煤成岩作用的压缩,形成数米几十米的煤层完全可能,何况成煤的过程往往经历上百万年。新疆大约在一亿九千五百万年前至一亿三千七百万年前的侏罗纪,结束了古海洋和海陆交互环境,形成内陆湖泊环境,尤其在新疆的北部和东部,内陆湖泊更为广泛,气候更加温暖湿润,植物生长茂盛,在河流和湖泊边缘地带,形成大面积的湿地,生长着茂密的植物,以银杏植物门、苏铁植物门和松柏植物门等裸子植物的发展达到了高峰,成为丰富的源源不断的成煤植物主体。当时真蕨植物也很繁盛,锥叶蕨迅速地发展起来,空前茂盛;恐龙等大型动物也很盛行。伴随缓慢下降且频繁振荡的地壳构造运动,在准噶尔盆地、吐鲁番盆地、哈密盆地和伊犁盆地等山间盆地,形成了大面积的沼泽和植物堆积。这些堆积的植物成煤后,在准噶尔盆地南缘形成的煤层有数十层,厚度可达一百多米,有的单层煤厚度就达六七十米。

(三)成煤过程

植物之所以能变成煤,要在特定的条件下经过一系列的演化过程。这个过程叫成煤过程,大体分为三个阶段。

1. 泥炭化作用阶段

在温暖潮湿的适宜气候条件下,在相对稳定的大面积的近海、滨湖、 湖、沼泽盆地环境中,植物不断地繁殖、生长、死亡,其遗体堆积在水中。生物(也有少量动物)遗体受到水体的浸没与空气隔绝,在缺氧的还原环境下,不会很快腐烂掉,因而日积月累,层层叠叠,厚度不断增加,不断地压实。压实的植物堆积层在微生物的作用下,植物遗体不断地分解、化合,就形成了泥炭层。植物形成泥炭的生物化学过程大体分为两个阶段,先是植物遗体中的有机化合物,经过氧化分解和水解作用,化为简单的化学性质活泼的化合物;之后是分解物进一步相互作用形成新的较稳定的有机化合物,如腐殖酸、沥青质等。植物的分解、合成作用是相伴而行,在植物分解作用进行不久,合成作用就开始了。植物的氧化分解和水解作用是在大气条件和微生物的作用下,在泥炭的表层进行的。在低位泥炭沼泽的表面含有大量的喜氧细菌、放线菌、霉菌,而厌氧菌很少,随着深度的增加,霉菌很快绝迹,喜氧细菌和放线菌减少,厌氧菌很快增加。在微生物的活动过程中,植物的有机组分被合成为新的化合物。当环境逐渐转为缺氧时,纤维素、果胶质又在厌氧细菌的作用下,产生发酵作用,形成甲烷、二氧化碳、氢气、丁酸、醋酸等产物。随着植物遗体的不断分解和堆积,在堆积的下层,氧化环境逐渐被还原环境所代替,分解作用逐渐减弱;与此同时,在厌氧菌的参与下,分解产物之间的合成作用和分解产物与植物残体之间的相互作用开始占主导地位,这种合成作用就形成了一系列新的产物。植物转化为泥炭后,主要成分是腐殖酸和沥青质,在化学成分上发生了变化。植物的角质层、孢粉壳、木栓层是稳定的,所以常常能完整地保存在煤层中。

2. 煤化作用阶段

由于地壳不断地运动,泥炭层形成后继续下沉,在盆地相对较高的地段风化剥蚀的泥沙被水和风带到盆地的低洼泥炭沼泽,将已堆积的泥炭层覆盖起来。覆盖的泥炭层随着进一步的下沉,覆盖层的进一步的加厚,环境就发生了显着的变化。首先,它要经受上覆岩层压力的不断增大;在压力不增大下不断地发出热量,使其温度不断地升高。在压力与温度的共同作用下,泥炭层开始脱水,进而固结压实。在生物化学作用下,氧含量进一步减少,而含碳量逐渐增加,腐殖酸降低,比重增加。经过这样一系列的复杂变化之后,泥炭就变成了褐煤。

3. 变质作用阶段

褐煤继续受到不断增高的温度和压力的影响,引起内部分子结构、物理性质和化学性质的不断变化,使其发生了变质而成为烟煤。温度、压力与时间是褐煤变质的三要素,其中以温度最为重要。地球有地温递增现象,即地球的温度由表及里,由上至下温度是逐渐递增的。地球向深部每增加 100 米温度增加 3 度。地温这种有规律的递增现象称作地温梯度。虽则是地球的普遍现象,但各地由于地壳结构的不同,地下岩浆分布的不同,梯度的幅度还是有区别的。当成煤区附近有岩浆体存在时,对煤的变质将产生显着的影响。

温度对煤的变质作用虽然占据了主导地位,但是如果温度不断升高,加之如果密闭条件不好,超过一定的限度就可能把煤烧掉。因此还一定要在密闭的条件下和适当的压力下,煤才能得到适度的变质。时间的长短与温度的高低也有关系,如果煤化作用处在 150℃~ 200℃较低温度,但持续的时间长,持续两千万年至一亿年,就足够形成高变质的烟煤和无烟煤。温度、压力和时间对煤的变质起着综合的作用。在温度和压力不变的情况下,时间越长煤的变质作用越强。但也有人认为,只有当温度超过 150℃时时间才起作用,否则时间再长也不会对煤的变质产生显着影响。压力对煤的变质作用也有两种不同的认识,一种认为压力增加后气体不易逸出,挥发分不能改变,从而阻碍了煤的变质程度的加深;另一种则认为无烟煤及石墨有定向的晶格,单纯的加热不会产生这种结果,而是压力促使煤的结构发生了变化。

(四)煤的区域变质、接触变质、动力变质作用

1. 区域变质作用

随着煤沉降深度的增加,含煤岩系被其他地层所覆盖,受地球内部热量和压力的长期影响所引起的变质作用称煤的区域变质。在区域变质作用的影响下,煤的变质常常呈现出一种有规律的变化。首先煤变质具有垂直分带的规律,在同一煤田内随着深度的增加,煤的挥发分逐渐减少,变质程度逐渐升高。这个规律是在 1873 年希尔特研究德国鲁尔煤田、英国威尔斯煤田和法国比来煤田时发现的,后来就称为“希尔特定律”。例如在鲁尔煤田,含煤地层厚 3000 余米,煤种自上而下为长焰煤、气煤、肥煤、焦煤、贫煤带,分带性很明显。我国的鸡西煤田煤种也有很好的分带性。由于目前确定煤质牌号的主要指标是煤中挥发分的百分含量,所以希尔顿定律可以用挥发分的变化来表示。每下降 100 米所引起的挥发分含量的变化称为“挥发分梯度”。挥发分梯度受地热梯度的控制,由于各地的地热梯度不一致,挥发分梯度也就因地而异。区域变质作用的另一个重要特点就是煤变质程度的水平分带规律。因为在一个煤田中,同一煤层原始沉积时的沉降幅度可以不同,而且成煤以后因构造变动而发生的下降深度也不一样,这种关系反映到平面上就表现为不同地段有不同的变质程度,即为煤变质的水平分带现象。由于沉降并不一定呈现为均匀的幅度,所以水平分带也可以宽窄不一。宽的地方代表沉降幅度变化较缓的地段,窄的地方代表沉降幅度变化较急的地方。

2. 接触变质作用

当岩浆侵入或靠近煤层及含煤建造时,由岩浆带来的高温、挥发性气体和压力,使煤的变质程度升高的作用称煤的接触变质作用。接触变质作用的一种是热力变质,是由侵入在煤系下部的岩浆体析出的热量对煤产生影响所引起的变质作用。变种变质作用是岩浆不直接接触煤层,由岩浆的热量引起含煤地层温度升高而使煤发生变质,往往影响的范围较大。具体影响范围因岩浆规模不同而影响范围不同,岩浆侵入的规模大影响的范围就大。接触变质作用另一种是由火成岩岩体直接侵入煤层中发生的变质作用。这种变质作用影响范围往往较小,岩浆接触煤层的地方常常形成天然焦,煤层的围岩亦具有某些变质现象。远离岩浆岩体,煤的变质程度则逐渐降低。煤的变质带常常围绕岩浆岩体呈环状分布,或者靠近岩浆岩体的一侧呈带状或环状分布。

3. 动力变质作用

由强烈的构造运动如挤压褶皱等产生的区域温度增高所引起的煤化过程,称煤的动力变质作用。动力变质作用常常发生在构造变动强烈的地区,如新疆的库拜煤田、准南煤田东段阜康大黄山一带、哈密野马泉一带、艾维尔煤田一带等,同属侏罗纪煤田,但变质程度比其他煤田高出许多。

C. 从煤中分离壳质组有哪些方法

采用岩石学的科学研究方法来研究煤的成因、结构和性质,从宏观上将煤分成镜煤、亮煤、暗煤和丝炭;从微观上(在显微镜下)将煤分成镜质组、惰质组、壳质组和矿物质,其中镜质组、惰质组和壳质组是不同有机组分称为显微组分。显微组分和煤的宏观组分关系:镜煤主要是镜质组,亮煤是镜质组和壳质组的混合物,暗煤是壳质组和惰质组的混合物,丝炭主要是惰质组。在科学研究中,通常将煤的显微组分称为煤岩组分。 (1)煤岩组分的成因
镜质组,亦称凝胶体成分,由植物残体受凝胶化作用而形成。植物残体的木质纤维组织浸没在水下受厌氧微生物的作用,逐渐分解形成无结构的胶态物质,再经过漫长的煤化作用阶段,形成镜质组。
惰质组,亦称丝炭化成分,是由丝炭化作用形成的。植物残体的木质纤维组织先暴露在空气中,处于氧化环境下,细胞腔中的原生质很快被好氧微生物破坏,而细胞壁相对较稳定,仅发生脱水而残留下来。由于地质条件的变化,堆积环境转变为还原性,残留物不再继续破坏,从而形成具有一定细胞结构的丝炭。另外,也有一部分丝炭来源于森林火灾留下的木炭,称为火焚丝炭。
壳质组与前面两组显微组分不同,它是由植物遗体中的类脂物质,如孢子、树脂和角质层等形成。
(2)煤岩组分的结构
镜质组在显微镜透射光照射下,呈橙红至棕红色,透明状;反射光下呈灰色,无突起。惰质组在透射光照射下呈黑色,不透明;反射光下呈白色至亮黄色,有突起
壳质组在透射光下呈黄至橙黄色,半透明;反射光下呈黑灰至灰黑色
(3)煤岩组分的性质
光学性质:反射率、荧光特性、显微结构
元素组成:
镜质组:相对富氧
惰质组:富碳、贫氢 壳质组:富氢、贫碳
工艺性质:粘结性、反应性、发热量 变化历程:
镜质组:变化相对均匀
惰质组:变化缓慢
壳质组:对热敏感,在高阶烟煤阶段与镜质组一致
镜质组 壳质组 惰质组
挥发分 中等 高 低
粘结性 高 中 低 反射率 中等 低 高
碳含量 中等 低 高
氢含量 中等 高 低
荧光性 弱~中等 强 弱
2. 煤的组成有那些表示方法,包含那些指标?采用的基准有那些,如何进行基准换算? 答:煤的组成:根据应用,按性质类似划分为若干集总组分表示组成(工业分析、溶剂抽提、煤岩组成)。按煤中有机质的构成元素表示组成(元素分析)
工业分析:水分M(外在水、内在水、结晶水、热解水);灰分A;挥发分V和固定炭FC
元素分析:C,H,N,S(有机S,无机S),O以及少量P,Cl 煤岩组成:镜质组、惰质组合壳质组溶剂抽提:普通抽提、特定抽提、超临界抽提、热解抽提和加氢抽提
煤组成分析数据常用的基准有:收到基ar,干燥基d,空气干燥基ad,干燥无灰基daf等,在分析项目符号的右下角标注,一般化验时多用 daf 采用基准时注意:不同方法表示的煤分析项目需包括在使用基准内。如水分不能用干燥基表示,灰分不能用干燥无灰基表示 基准换算时要搞清各级准的关系,再确定一个方便的基准为100%
按换算前后不变量进行换算,基准关系为:
收到基煤=外在水+空气干燥基煤=全水+干燥基煤=全水+灰+干燥无灰基煤
3. 煤有那些物理性质和化学性质,与煤化程度和结构有何关系?
答:物理性质:
1) 空间性质:密度:分为真密度、视密度和堆密度。真密度与煤的结构有关。①腐植煤>腐泥煤;②随着煤化度的增加,煤的真密度增加,但先增加的缓慢,至无烟煤则增加的幅度大;③惰质组>镜质组>壳质组,随着煤化度增加差别减小。镜质组的密度随煤化度增加先有所下降后增加(主要是因为低煤化度O减少的影响大于C增加的影响;④矿物质真密度>煤的真密度,故灰分高及风化煤真密度增加。

D. 煤炭用途变迁

煤的用途与煤的种类有密切的关系,不同的煤种其用途是不同的,煤的种类与用途大致可以归纳以下几方面。

(一)煤的种类

煤的分类由于依据的主要标准不同,其分类也有差异,分类方法比较多。我这里主要介绍一下按成因分类及实用分类。

按成因分类:按成因分类是依据成煤植物在聚积阶段各种综合因素进行的,主要是根据成煤物质的种类——高等植物还是低等植物;植物遗体的环境和条件——沼泽的积水深浅、水的活动性、氧气供应和微生物活动等情况,还有成煤物质分解转化过程所决定的。

按成煤物质的种类可以分为三类,即高等植物形成的腐植煤;由低等植物形成的腐泥煤;由高等植物与低等植物形成的腐植-腐泥煤。按植物堆积环境和条件以及成煤物质转化过程将煤的成因类型可分为腐植煤和残植煤。腐植煤和残植煤都是由高等植物变成的,腐植煤的原始物质主要由高等植物的木质和纤维素组成,残植煤的原始物质则主要是植物生物化学稳定的组织,如角质层、孢子、树脂物质、树皮的木栓组织等。腐泥煤的物质组成主要是藻类物质变化产物。腐植腐泥煤是腐植煤与腐泥煤之间的过渡类型。自然界大多数的煤是腐植煤,残植煤、腐植-腐泥煤、腐泥煤则比较少见,通常构成腐植煤中的夹层和透镜体,在较少情况下可单独构成煤层。

按实用分类:这种分类方法,首先要对煤的物质组成进行较全面的了解。煤主要由碳、氢、氧、氮等元素构成的有机质和一些矿物杂质和水分等无机物所构成。煤的质量是由煤的主要组分指标及变质程度决定的。确定煤质量的主要指标有水分、灰分、挥发分、焦渣、角质层厚度、发热量、磷、硫、灰成分、灰熔融性、可选性等。

水分:煤中的水分可分外在水分和内在水分两种。外在水分是在采掘、搬运、储存及洗选过程中,存留在煤炭表面和裂隙中的水分。这种水分自然风干即可除去。另一种是内在水分,是吸附和凝聚在煤分子内部的一些细小的毛细孔里的水分。这种水分经自然风干是除不掉的,需在温度达到 100°以上时才能干燥蒸发掉。内在水分与煤的变质程度和风化程度有关。一般来说,煤的变质程度超高,内在水分越少。煤经风化后因疏松吸潮,内在水分又会增加。地质勘探中常采用内在水分作为评价煤质的数据。内在水分和外在水分的总和称为全水分,它是矿井采出来的煤或直接用工农业生产煤的总含水量,通常作为煤炭供销双方评价煤质的依据之一。我们常用的水分指标有全水分,用“mt”表示也常用“Mar”表示;空气干燥基水分,也可以认为是内在水分,常用(Mad)。

灰分:灰分是煤彻底燃烧以后所剩下的残渣。按成因可分为内存灰分和外在灰分两种。外在灰分是来自煤层顶底板和夹矸中的岩石碎块,它与采煤方法的合理与否有很大关系。外在灰分通过洗选后可大部分除去。内存灰分是成煤的原始物质本身所含的无机物,另外也包括沉积时由风和水搬运来的矿物杂质。内在灰分很难通过洗选除去,含有大量内在灰分的煤是非常难选的。常用的指标有空气干燥基灰分(Aad)、干燥基灰分(Ad),也有用收到基灰分的(Aar)。煤的灰分对煤的实用价值影响很大,是评价煤的质量的主要指标之一。冶金用煤的灰分如增加1%,炼铁炉平均要多消耗 2% ~ 2.5% 的焦炭,同时还会使炼铁炉的生产效率降低约 2%。灰分也增加运输上负担,增加运输成本。不同的国家对煤的灰分的指标要求有所不同。我们国家规定,炼焦用煤的灰分最好不超过 10%,动力用煤其指标可适当高一些,只要发热量达到要求就可以。当灰分大于 40% 时就不是煤了。

挥发分:挥发分是煤在与空气隔绝的高温条件下所排出的挥发物质,主要成分为沼气、氢、二氧化碳和其他碳氢化合物等。挥发分含量与煤的变质程度有关,变质程度越高挥发分越少。挥发分可以作各种高发热量的燃料,也可用来制造染料、塑料、炸药以及其他许多化工产品。挥发分是评价煤质,进行煤种分类的主要指标之一。由于挥发分是煤中有机可燃体的一部分,所以在实际生产中,通常是以挥发分占有机可燃体的百分含量为指标。常使用的有空气干燥基挥发分(Vad)、干燥基挥发分(Vd)、干燥无灰基挥发分(Vdaf)和收到基挥发分(Var),其中 Vdaf 是煤炭分类的重要指标之一。

焦渣:煤中除去挥发分后残留在坩埚里的固态物质就是焦渣。它是由灰分和煤中不挥发的有机物质固定炭组成。固定碳的含量,通常是以其占有机可燃体的百分含量表示,其含量随着变质程度增高而增高。不同的煤形成的焦渣特征是不同的,有的焦渣呈粉末状,有的焦渣熔融黏结成块状,强度大。因此,根据焦渣特征可以初步判断煤的黏结性,对估计煤能不能炼焦是有很大意义的。

角质层厚度:角质层厚度是依照炼焦过程,在实验室里用仪器测定的。把有黏结性的煤粉碎成细粒,在密封的条件下加热到一定温度时,煤中有机质受热分解,软化而成角质层,最后结成了块状的焦炭。黏结性好的煤,加热时形成的角质层厚度适当,结成的焦炭熔融黏结成块状。不黏结的煤加热时,就不能产生角质层,也就不能结成焦炭,呈粉末状。一般来说,煤的角质层厚度是随煤的变质程度增加而有规律的变化,变质程度很低或很高的煤,角质层的厚度都很小或等于零,也就是黏结性不好或没有黏结性。角质层厚度能反映煤的黏结性,因此也就成了评价煤质、进行煤的工业分类的重要指标之一。常用 y 或 b 表示。

发热量:煤的发热量是指单位重量的煤完全燃烧时放出的热量。它对评定煤的燃烧价值有很重要的意义。在煤质评价中,通常用煤的低位发热量来评定煤的燃烧价值,即每千克煤在坩埚中燃烧后实际能被选用的热量。煤的发热量大小与煤的可燃元素碳、氢等含量有关,因而也与煤的变质程度有关。一般来说,变质程度越高,发热量越大。但是,当烟煤向无烟煤过渡时,氢的储量明显降低,由于氢在燃烧时产生的热量约等于碳的 4.2 倍,所以某些烟煤的发热量略高于无烟煤。另外,水分和灰分的增多,均可降低煤的发热量。不同的煤种其发热量是不同的,因此煤的发热量用不同的等级表示。

(1)低热值煤,表示为 LQ8.50 ~ 12.50 MJ/kg

(2)中低热值煤,表示为 MLQ12.51 ~ 17.00 MJ/kg

(3)中热值煤,表示为 MQ17.01 ~ 21.00 MJ/kg

(4)中高热值煤,表示为 MHQ21.01 ~ 24.00 MJ/kg

(5)高热值煤,表示为 HQ24.01 ~ 27.00 MJ/kg

(6)特高热值煤,表示为 SHQ>27.00 MJ/kg

注:1cal15(15℃卡)= 4.1855J

硫和磷:煤中常含有硫和磷。硫是煤中的有害杂质,煤在燃烧时硫会变成二氧化硫,腐蚀锅炉、管道,污染大气,增加温室效应,空气中的硫多了还会形成酸雨。炼焦时,有一部分硫会转入焦炭,用含硫高的焦炭炼铁,会降低钢铁的质量。钢铁中的硫分超过一定限额,就会使钢铁变脆,强度降低。煤中的无机硫主要是黄铁矿硫,常常呈细脉充填在煤的裂缝中,或者结核状夹在煤层中,对这部分硫可以通过机械洗选的方法剔除。均匀地分散在煤中的有机硫则很难选除掉。煤中的硫分是评价煤质的极其重要的指标。在实际的生产中通常是以绝对干燥煤样的总含硫量为指标来评价煤的质量的。我国规定,凡是工业用煤必须先经过洗选,尽量降低硫的含量;含硫量大于 3% 的煤就不能开采。常用的指标有空气干燥基全硫(St,ad)、干燥基全硫(St.d)及收到基全硫(St,ar)。

可选性:上面已讲过,煤中的灰分、硫分、磷分等,对煤的加工利用都是有害杂质。为了降低煤中的有害杂质,提高煤的质量,特别是提高炼焦用煤的质量,就需要对原煤进行洗选。对于直径大于 50 毫米的矸石和黄铁矿等杂质,可以用人工手选,颗粒小于 1 毫米的粉煤,则可采用浮选方法进行选煤。煤中矿物的颗粒大小和分布状态,直接影响着煤的洗选难易程度,这就是煤的可选性。煤的可选性是评价煤质,特别是评价炼焦用煤质量的重要指标之一。

灰成分和灰熔融性:灰成分是煤灰分中的矿物成分,灰熔融性是煤的灰分在不同温度下发生变形、软化和熔化状态。它们也是影响煤的用途的重要指标之一。

另外,煤中的有害有毒元素对煤的质量和用途也有较大的影响,如砷、汞和放射性铀等,若其含量超标,会对人体健康产生大的影响。

依据上述煤质量的各种指标,结合煤的变质程度和用途,就可以对煤进行实用性分类。我国煤的分类是根据煤的煤化度,将我国所有的煤分为褐煤、烟煤和无烟煤三大煤类。又根据煤化度、煤质组分和工业利用的特点,将褐煤分成 2 个小类,无烟煤分成 3 个小类。烟煤比较复杂,按挥发分分为 4 个档次,按黏结性可以分为 5 个或 6 个档次。主要类型是褐煤、长焰煤、不粘煤、弱粘煤、1/2 中粘煤、气煤、气肥煤、肥煤、1/3 焦煤、焦煤、瘦煤、贫瘦煤、贫煤、无烟煤。其中褐煤的变质程度最低,无烟煤的变质程度最高。长烟煤到气煤是低变质烟煤,肥煤到焦煤是中变质烟煤,瘦煤、贫煤和无烟煤是高变质煤。

褐煤的特点是光泽暗淡,内生裂隙不发育,有干缩裂纹,腐殖酸含量高,发热量低。是低热值燃料和制作化肥的原料。

长焰煤、不粘煤、弱粘煤和中粘煤的共同特点是韧性大,光泽较弱,内生裂隙很少,燃烧焰长,不结焦,是燃烧锅炉、化工、制油的最佳煤种。气煤除上述性质和用途外,还具有膨胀熔融结渣,有时有气体喷出的现象。气煤有一定的结焦性,还可以作为炼焦配煤。

肥煤和焦煤的共同点是具有玻璃光泽,内生裂隙发育,性脆易破碎。膨胀熔融黏结性好,焦渣有光泽,是炼焦的最佳原料。

瘦煤光泽强,微膨胀熔融,燃烧时烟淡焰短难着火,可做炼焦配煤。

贫煤具有金刚光泽,不膨胀熔融,燃烧时烟淡焰短难着火,适合燃烧锅炉和化工用煤。

无烟煤具有似金刚光泽,致密坚硬,比重较大,燃烧时不易着火,无烟几乎无焰,可做化工用煤和民用燃煤。

(二)煤的主要用途

早在几千年前,劳动人民就发现了煤可以燃烧,可以用来燃烧取暖、做饭和冶铁。蒸汽机发明后,煤成为机器动力的主要燃料。后来,煤又用来炼焦、发电、制作电石、煤气等。现在,煤仍然是主要的能源。我国的一次性能源结构中煤占到 70% 左右。有专家预测,近期内这种能源结构不会有大的改变。当前煤的主要用途是发电、炼焦、供热取暖和民用燃烧,但煤气化、煤液化、煤化工等煤的综合利用也在迅速地发展。

动力用煤:动力用煤是煤的主要用途,它是把煤作为燃料用来燃烧锅炉取暖、发电和作为蒸汽机车的动力等。因为动力用煤主要是燃烧,所以任何牌号的煤都可以用来作燃料取得热源。

煤焦化:煤焦化就是用煤炼焦。它是将煤在隔绝空气的密闭炼焦炉内加热,得到的是焦炭、煤焦油和焦炉气三种原料。这三种原料经进一步加工处理可以得到一系列的煤化工产品。高温炼焦可以获得大约 78% 的焦炭,4% 的焦油,18% 的焦炉气。焦炭的主要用途是炼铁,其次是用于化肥工业。焦炭经进一步加工可制成合成氨、电石等。电石还可以再制成塑料、合成纤维、合成橡胶、合成化工产品等。煤焦油是煤焦化的副产品,是一种黑色黏稠状液体,主要成分是芳香族化合物。它的用途更加广泛,可以制成轻油、酚油、萘油、洗油、蒽油、沥青等。用这些产品还可以制成苯、农药、炸药、染料、油漆、二早酚、聚乙烯稳定剂、合成材料等。焦炉气是很好的气体燃料和宝贵的化工原料,可作为冶金工业燃料、民用煤气,也可以制作氨、粗苯、氢、甲烷、乙烯、硫化氢及各种化工产品。如果一个焦化厂每小时能生产 15000 立方米焦炉气作为化工原料,则一年可以生产 55000 吨尿素或 70000 吨硝铵,16000 吨甲醇,2500 吨乙烯。因此焦化厂焦炉气的综合利用对发展农业、冶金工业和化学工业都具有重要的意义。

煤气化:煤气化是在高温有氧的情况下,将煤中的有机质转变成为含有一氧化碳、沼气、氢气等煤气的过程。煤气是一种极好的工业和民用燃料,用煤气作燃料比直接烧煤的效率高一倍多,气体燃料还有一系列优点,如燃烧完全、使用和输送方便等。因此,煤气已广泛用于冶金工业,机械工业、化学工业、建筑材料工业以及城市中的民用燃料。煤气中的一氧化碳和氢气可合成甲醇、醛、酮、酸、饱和烃、烯烃、芳香烃、合成氨等,所以,煤气也是重要的有机化学工业原料。

煤气化有地面气化和地下气化。地面气化是利用煤气发生炉把煤变成煤气。地下气化是在地下直接把煤层燃烧气化,再把煤气从地下输送到地面利用。

在地面用煤和焦炭等固体原料生产煤气的方法很多,大体可归纳为两类。一类是固体原料的气化,将煤或焦炭在有高温和气化剂的条件下转化为气体。又根据气化所用的固体原料种类不同以及固体原料在气化炉中存在的状态不同,制气的方法又分为固定层气化法和沸腾层气化法两种。另一类是固体原料的干馏,它是煤的有机质热解为气体的方法,这是生产城市煤气的常用方法。

固定层气化法是气化的固体在煤气发生炉中基本是固定的。发生炉煤气的气化过程是在固定层煤气发生炉中进行的,从煤气发生炉的底部通入空气和少量的水蒸气,从炉顶加入煤或焦煤,使气体和煤在 700℃~ 800℃以上的高温下发生剧烈的化学反应生成煤气。发生炉煤气用于炼钢炉、玻璃窑炉、炼焦炉等的加热,也可与水煤气混合作为制造合成氨、甲醇的原料气。水煤气是水蒸气与炽热的无烟煤工焦煤作用的产物。水煤气是制造合成氨的主要原料气。

沸腾层气化法是从炉底以高速通入气化剂,使气化炉中的细粒状煤处于浮动的状态,很像液体的沸腾,故称为沸腾层气化法。沸腾层气化法是直接对小于 10 毫米的煤粒进行连续气化的方法。

煤液化:煤液化是把煤由固体状态变为液体状态的过程。煤液化可以是直接液化,也可以是间接液化。

煤的直接液化可以通过低温干馏和加氢液化。煤的加氢液化是将煤、催化剂和重油混合在一起,在 380℃~ 550℃的高温、200 ~ 700 个大气压高压氢之下,使煤中的有机质几乎全部转化为液体和气体产物,进一步加工得到汽油、柴油等液体燃料。低温干馏是将煤通过内热式发生炉变成焦油产物,进一步加工为液体燃料和化工产品。

煤的间接液化是将煤先进行气化,进一步加工成为液体燃料的过程。

煤化工:煤化工就是将煤制成化工产品的方法。煤制化工产品的方法很多。通常是把煤先进行气化或液化,再进一步加工成化工产品。也可以先把煤加工成电石,再转化成为化工产品。

煤的综合利用:煤中的有益元素很多,煤灰中可以提取锗、镓、铀、钒等重要的稀有分散元素、放射性元素,这些元素是国防工业的原料。煤中还共生具有巨大开发价值的煤层气。煤灰还可以制造水泥、改良土壤等。煤灰的综合利用是煤综合利用的一个重要方面。

煤中锗和镓的利用:锗是半导体和电子工业重要的原料之一。锗在地壳中很少呈单独矿物出现,主要作为伴生组分存在于铅锌矿和煤层中。锗的提取工艺简单,主要从煤灰中和烟尘中提取。煤中的锗一般品位不高,但分布广泛,是锗矿床的主要成矿类型。煤中的锗含量达到每吨煤中 20 克就可以回收。新疆的伊犁、青河等煤矿的煤层中都含有锗和镓。

煤中铀的利用:铀在煤中主要以含铀的有机化合物存在,是铀矿床的重要工业类型之一,一般要求煤中伴生铀的工业品位为 0.02%。煤中铀的富集一是在泥炭堆积阶段,含铀的水溶液注入泥炭沼泽后,被腐殖酸强烈吸附所致。二是地下水的淋滤作用把铀带到煤层中。铀在煤中的富集主要是由于腐殖酸吸附铀离子变为金属有机络合物,或者作为还原剂把铀离子转变为不溶状态,固定于有机组分中。铀通常也存在于煤层顶底板的砂岩中,局部可富集出现。新疆的侏罗纪含煤地层常出现铀的富集区,在伊犁南部、吐鲁番地区等地的含煤地层中,铀的含量已达到工业品位。目前,利用地浸法开采煤系地层的低品位铀取得很好的效果。

煤中钒的利用:钒主要用于钢铁工业炼制优质合金。自然界钒的分布很分散,常与其他元素伴生形成含钒矿床。钒在煤系地层中的富集,与海生浮游生物和底栖生物成因的有机质密切相关,所以由浅海藻类聚集形成的腐泥煤中钒含量较高。钒在煤层中主要呈金属有机络合物形式存在,一般来说有机质含量越高钒含量就越富集。煤系地层中有时存在含钒砂岩,钒和铀经常共生形成钒钾铀矿。

煤层气的开发利用,近些年无论在国际上还是在国内,都发展得很快,可以说一个新兴的产业正在兴起,将在能源结构中占有很重要地位。这里只提一下,将煤的情况讲完后专门详细介绍。

(三)开采煤要注意保护资源和环境

煤是不可再生资源,用完了就没有了,因此要十分珍惜爱护煤炭资源。煤的开采要合理规划、统筹安排;选择先进合理的采煤方法,提高煤资源回收率,充分利用薄煤层;以科学发展观为指导,建立循环经济产业链,充分地利用煤炭资源的各种使用效能,提高煤的利用效率。

煤的开采利用对环境会产生一定的影响,因此在开采和利用煤炭资源时要特别注意环境的保护。煤矿开采中由于地下挖空塌陷,常会在地面上形成裂缝、塌陷坑、岩体滑移、山体滑坡等地质灾害,对森林、草原和农田造成危害甚至造成严重破坏;煤矿开采排出的瓦斯、二氧化碳和一氧化碳等废气能污染大气,增加温室效应;排出的硫化氢气体还可以形成酸雨,对人、生物、农作物产生严重危害;排出的废水可以污染环境及地下水;排出的粉尘、矸石可以污染大气、周围环境。炼焦排放的煤烟、工业锅炉和民用锅炉排放的烟尘可以污染大气;煤液化、煤化工也能形成大量废气和废水,污染环境。但是,上述煤开采利用中存在对环境的各种不利影响和危害,只要采取切实有效的措施,是可以大大降低其影响程度的,甚至可以完全避免其危害。关键是在开采和利用煤矿时要牢固地树立环境意识,要把保护环境贯穿在开采利用的全过程,采取切实有效的措施,防止对环境的影响和危害,做到煤尽其用,物有所归,环境良好,人与自然和谐相处。

E. 煤的胶质层是什么

煤的胶质层指数,又称煤的胶质层最大厚度,或Y值。它是原苏联、波兰等国家煤的分类指标之一,也是我国煤的现行分类中区分强粘结性的肥煤、气肥煤的一个分类指标。
煤的胶质层指数,是原苏联列.姆.萨保什尼可夫和列.帕.巴齐列维奇提出的。它的测试要点是根据不同结焦性的煤在干馏过程中胶质层的厚度、收缩情况和膨胀曲线的不同,测试胶质层的最大厚度(Y值)、最终收缩度(X值)和体积曲线,来表征煤的结焦性。

F. 关于煤炭的角质层是什么

烟煤在焦化过程中不断形成的胶态层的厚度。烟煤在干馏条件下加热到一定的湿度范围时,表面逐层热分解,形成胶体状态,再逐渐固结成焦炭。是烟煤的一种特性,也是烟煤分类的一种指标。一般用胶质层测定仪测定,以毫米表示,可由0到30以上。例如主焦煤的胶质层厚度是18~26,肥煤的是>25等。

G. 煤炭角质层低于5能做出来吗

不能,烟煤在焦化过程中不断形成的胶态层的厚度。烟煤在干馏条件下加热到一定的湿度范围时,表面逐层热分解,形成胶体状态,再逐渐固结成焦炭。是烟煤的一种特性,也是烟煤分类的一种指标。一般用胶质层测定仪测定,以毫米表示,可由0到30以上。例如主焦煤的胶质层厚度是18~26,肥煤的是>25等。

阅读全文

与煤炭里的角质层怎么做相关的资料

热点内容
一次燕窝要多少克 浏览:1162
面部血管瘤怎么治不留疤 浏览:2016
yamii胶原蛋白怎么吃 浏览:1411
贵阳祛斑哪个好先荐利美康 浏览:1338
和田玉戈壁料没油性怎么办 浏览:956
鹅耳朵冻疮涂什么精油 浏览:1974
燕窝有什么不好的副作用吗 浏览:943
皮肤使用爽肤水有什么好处 浏览:1318
漂白燕窝炖不烂怎么办 浏览:1480
燕窝跟什么吃最好 浏览:1719
容易长痘痘油皮怎么可以做美白 浏览:1550
医院和美容院哪个祛斑好 浏览:1708
山羊奶面膜与龙血精华面膜哪个好 浏览:1766
学生干皮适合什么面霜 浏览:1534
生姜和什么一起煮能祛斑 浏览:1390
两三个月的宝宝选面霜怎么选 浏览:1604
嘴巴上和下面长痘怎么治 浏览:1708
南京医院激光祛痘印多少钱 浏览:1049
燕窝每天多少毫升合适 浏览:1645
胶原蛋白肽分子量多少利于吸收 浏览:991