㈠ TRF是什么意思
荷尔蒙又叫激素:是英语的音译
一、定义
激素是生物体产生的,对机体代谢和生理机能发挥高效调节作用的化学信使分子。激素是由内分泌腺或具有内分泌机能的细胞产生的。内分泌细胞是一些特殊分化的,对内外环境条件变化敏感的感应细胞,当他们感应到内外环境变化的刺激时,就合成并释放某种激素。激素作为化学信使,不经导管进入循环系统,将条件信息带到特定的效应细胞,引起某种效应。直接接受激素调节的效应细胞,称为该激素的靶细胞。因为激素是通过体液传送到靶细胞发挥作用的,所以将激素调节称为体液调节。体液调节在神经系统的统一控制下,全面系统协调地调节着物质及能量代谢,从而协调生物的各项生理机能。神经既可控制内分泌系统的分泌,又可以直接分泌激素,而某些激素也可以作用于神经系统,如甲状腺素可促进大脑发育。
二、分类
激素按其化学本质可分为三类:
1.含氮激素 包括氨基酸衍生物激素、多肽激素和蛋白质激素。
2.固醇激素 包括性激素和肾上腺皮质分泌的激素。
3.脂肪酸激素 是二十酸衍生物,如前列腺素等。
三、特点
1.高度专一性 包括组织专一性和效应专一性。前者指激素作用于特定的靶细胞、靶组织、靶器官。后者指激素有选择地调节某一代谢过程的特定环节。例如,胰高血糖素、肾上腺素、糖皮质激素都有升高血糖的作用,但胰高血糖素主要作用于肝细胞,通过促进肝糖原分解和加强糖异生作用,直接向血液输送葡萄糖;肾上腺素主要作用于骨骼肌细胞,促进肌糖原分解,间接补充血糖;糖皮质激素则主要通过刺激骨骼肌细胞,使蛋白质和氨基酸分解,以及促进肝细胞糖异生作用来补充血糖。
激素的作用是从激素与受体结合开始的。靶细胞介导激素调节效应的专一性激素结合蛋白,称为激素受体。受体一般是糖蛋白,有些分布在靶细胞质膜表面,称为细胞表面受体;有些分布在细胞内部,称为细胞内受体,如甲状腺素受体。
2.极高的效率 激素与受体有很高的亲和力,因而激素可在极低浓度水平与受体结合,引起调节效应。激素在血液中的浓度很低,一般蛋白质激素的浓度为10-10-10-12mol/L,其他激素在10-6-10-9mol/L。而且激素是通过调节酶量与酶活发挥作用的,可以放大调节信号。激素效应的强度与激素和受体的复合物数量有关,所以保持适当的激素水平和受体数量是维持机体正常功能的必要条件。例如,胰岛素分泌不足或胰岛素受体缺乏,都可引起糖尿病。
3. 多层次调控 内分泌的调控是多层次的。下丘脑是内分泌系统的最高中枢,它通过分泌神经激素,即各种释放因子(RF)或释放抑制因子(RIF)来支配垂体的激素分泌,垂体又通过释放促激素控制甲状腺、肾上腺皮质、性腺、胰岛等的激素分泌。相关层次间是施控与受控的关系,但受控者也可以通过反馈机制反作用于施控者。如下丘脑分泌促甲状腺素释放因子(TRF),刺激垂体前叶分泌促甲状腺素(TSH),使甲状腺分泌甲状腺素。当血液中甲状腺素浓度升高到一定水平时,甲状腺素也可反馈抑制TRF和TSH的分泌。
激素的作用不是孤立的。内分泌系统不仅有上下级之间控制与反馈的关系,在同一层次间往往是多种激素相互关联地发挥调节作用。激素之间的相互作用,有协同,也有拮抗。例如,在血糖调节中,胰高血糖素等使血糖升高,而胰岛素则使血糖下降。他们之间相互作用,使血糖稳定在正常水平。对某一生理过程实施正反调控的两类激素,保持着某种平衡,一旦被打破,将导致内分泌疾病。激素的合成与分泌是由神经系统统一调控的。top
第二节 激素的作用机理 top
激素的调节效应是由专一性激素受体介导的。激素到达靶细胞后,与相应的受体结合,形成激素-受体复合物,后者将激素信号转化为一系列细胞内生化过程,表现为调节效应。两类定位不同的受体,发挥调节作用的机理不同。通过表面受体起作用的激素,调节酶的活性,其效应快速、短暂;通过细胞内受体起作用的激素,调节酶的合成,其效应缓慢、持久。
一、分类
1. cAMP机制,如肾上腺素
2. 磷酸肌醇机制,如5-羟色胺
3. 酪氨酸激酶机制,如胰岛素
4. 基因表达机制,如类固醇激素
二、第二信使模式
(一)第二信使
含氮激素有较强的极性,不能进入靶细胞(甲状腺素例外),通过与靶细胞表面受体结合发挥作用。这些激素称为第一信使,与受体结合后,在细胞内形成传递信息的第二信使,发挥作用。激素的前三种作用机制都属于第二信使模式。已经发现的第二信使有cAMP、cGMP、Ca2+、三磷酸肌醇(IP3)和二酰甘油(DAG)等。他们具有以下特点:
1.由激素引发形成
2.合成与灭活容易(可通过一步反应完成)
3.浓度低(在10-7mol/L以下),变化大,寿命短
4.生成与灭活都受激素控制,能及时有效地调控其浓度水平
5.能调节细胞的代谢。
(二)第二信使的生成
激素-受体-第二信使调节系统的膜内装置包括三部分:受体、G蛋白和催化第二信使形成的酶。G蛋白是一系列鸟苷酸结合调节蛋白。形成激素-受体复合物后,受体变构,导致复合物与结合着GDP的专一G蛋白结合,形成三元复合物,然后G蛋白变构,复合物解体,生成G-GTP复合物,此复合物再与有关酶结合,使其活化,形成第二信使。最后G蛋白的GTP酶活性将GTP水解为GDP,释放出无活性的酶,准备下一次反应。
在专一性G蛋白的转导下,腺苷酸环化酶与鸟苷酸环化酶分别催化cAMP、cGMP的生成。磷脂酶C催化二磷酸磷脂酰肌醇(PIP2)水解,生成1,4,5-三磷酸肌醇(IP3)和二酰甘油(DAG)。
(三)第二信使的作用
多数第二信使通过直接活化蛋白激酶发挥调节作用。蛋白激酶是一类催化蛋白质磷酸化修饰的激酶,在生物调控中起重要作用。蛋白激酶的种类很多,根据底物被磷酸化的氨基酸残基不同,可分为丝氨酸或苏氨酸激酶和酪氨酸激酶;根据其调节因子可分为cAMP依赖性蛋白激酶(简称A激酶,PKA)、cGMP依赖性蛋白激酶(简称G激酶,PKG)Ca2+依赖性蛋白激酶(简称C激酶,PKC)等。cAMP和cGMP分别变构活化A激酶和G激酶,三磷酸肌醇使Ca2+浓度升高,二酰甘油提高C激酶对Ca2+的敏感性。
G激酶系统的调节效应,常与A激酶系统相反,组织中cAMP和cGMP的浓度变化也常互相消长。二者构成对立统一的调控系统。cAMP和cGMP分别在各自的磷酸二酯酶催化下水解灭活。
三磷酸肌醇作用于细胞内的钙储存库(线粒体、内质网),促进钙的释放,使其浓度急剧升高。钙作为胞内化学信使,通过活化C激酶和钙调蛋白,发挥其调节作用。PKC可以磷酸化多种蛋白,如糖原合成酶,磷酸化后活性降低。钙调蛋白(CaM)是一种钙依赖性调节蛋白,广泛存在于一切真核细胞中,结构十分保守。它是一种小分子酸性蛋白,分子量16700,有4个钙结合部位。钙调蛋白与钙结合后被活化,可刺激多种酶的活性,包括C激酶、腺苷酸环化酶、磷酸二酯酶和糖原磷酸化酶、糖原合成酶激酶等15种酶。
三磷酸肌醇和二酰甘油的寿命都很短。前者被水解生成肌醇,后者被磷酸化生成磷脂酸,通过磷脂酰肌醇循环,使二磷酸磷脂酰肌醇得以再生。
三、基因表达模式
类固醇激素是非极性分子,容易透过质膜进入细胞,通过与胞内专一性受体结合,发挥调节特定基因表达的作用。类固醇激素的受体是多亚基蛋白,与激素结合后发生变构,暴露出DNA结合部位。该复合物与特定的DNA序列(增强子)结合后,可加速受控基因的转录表达。如糖皮质激素与肝细胞受体结合,可促进糖异生过程中四种关键酶的合成。
四、激素的合成与灭活
(一)合成
1. 蛋白质和多肽激素是基因表达的产物
蛋白质激素 其基因表达的最初产物是无活性的前激素原,经剪切加工成为激素原,再经酶促激活,成为有活性的激素。前激素原的N末端都有一段由20-30个残基构成的信号肽序列。例如,胰岛素基因表达产生由105个残基构成的前胰岛素原,剪切加工后成为有两条肽链,共51个残基的胰岛素。
多肽激素 一般比其前体小得多。如催产素和加压素都是九肽,而其前体分别是由160个和215个残基构成的后叶激素运载蛋白原。后者经剪切产生活性激素和相应的运载蛋白,结合成复合物,包装于囊泡中,运往神经垂体。分泌时,激素与运载蛋白分离。另外,垂体分泌一种前阿黑皮素原,由265个残基构成,在不同细胞内经不同方式剪切加工产生多种激素,包括促肾上腺皮质激素、各种促脂解素、各种促黑激素以及调控痛觉的阿片样多肽、内啡肽、脑啡肽等。
2. 氨基酸衍生物激素
甲状腺素 是酪氨酸衍生物,来自甲状腺球蛋白的酪氨酸残基。甲状腺球蛋白是660kd的糖蛋白,含上百个酪氨酸残基。合成甲状腺素就以其中的部分残基作为酪氨酸供体,经碘化、缩合、水解,产生甲状腺素。
肾上腺素 也是酪氨酸衍生物,属于儿茶酚胺类。由自由酪氨酸经羟化、脱羧而成。
3.类固醇激素
肾上腺皮质激素、性激素等是以胆固醇为前体,经切断侧链和羟化等步骤合成。
4.脂肪酸激素
前列腺素等脂肪族激素是以花生四烯酸为前体合成的。
(二)激素的储存和释放
1. 含氮激素:含氮激素的释放是受调控的。此类激素合成后以膜质小泡的形式储存在胞液中,只有内分泌细胞受到某种刺激时,才释放到胞外。这种受控分泌机制与其作用的迅速和短暂有关。这样可以在需要时大量分泌,及时起到调节作用。
2. 固醇激素:合成后立即全部释放,进入血液,不在细胞内储存。所以调节其分泌的关键在控制其合成速度。这与其作用的缓慢和长久是一致的。
(三)运输
固醇激素和甲状腺素是脂溶性分子,在血液中运输时,大部分与专一的载体蛋白结合,只有少量呈游离状态。如甲状腺素与甲状腺素结合球蛋白结合,皮质醇与皮质类固醇结合球蛋白结合。
(四)灭活
激素要迅速灭活才能保证生理功能的及时、适度的调节。灭活的主要场所是肝和肾。多肽和蛋白质激素,在专一性肽酶和蛋白酶的催化下,被水解而灭活。胺类激素(肾上腺素等)由单胺氧化酶催化氧化脱氨而灭活。固醇激素经切除侧链、还原、羟化等反应灭活。许多激素的代谢产物从尿中排出。大多数激素在体液中的半衰期只有几分钟。例如,胰岛素半衰期为5-15分钟。在肝脏,先将胰岛素分子中的二硫键还原,产生游离的AB链,再经胰岛素酶水解成为氨基酸而灭活。
在激素作用下生成的第二信使也要及时灭活。cAMP和cGMP在专一性磷酸二酯酶催化下水解为相应的5’核苷酸。释放于胞液中的钙离子,被内质网中的钙泵运回内质网钙库。三磷酸肌醇和二酰甘油进入磷脂酰肌醇循环,重新合成二磷酸磷脂酰肌醇。
在激素调节中被磷酸化的酶或蛋白,被磷蛋白磷酸酶水解而除去磷酸基。
佛波酯(phorbol esters)是DAG的类似物,可以激活PKC,但又不能灭活,其作用是持久的,因此是一种致癌剂。许多致癌基因的产物具有酪氨酸激酶活性,但不受调控,因而致癌。top
第三节 部分激素介绍 top
一、含氮激素
(一)肾上腺素
1.结构及生成
肾上腺髓质分泌的激素有肾上腺素和去甲肾上腺素(正肾上腺素)。这两种物质也是交感神经末梢的化学介质。二者均由酪氨酸转变而来。酪氨酸在酪氨酸酶催化下羟化、脱羧、再羟化,生成正肾上腺素,再甲基化则成为肾上腺素。
2.生理功能
肾上腺素在生理上的作用与交感神经兴奋的效果很相似,都对心脏、血管有作用,可使血管收缩,心脏活动加强,血压急剧上升,但它对血管的作用是不连续的。另一方面,它可促进分解代谢,尤其是对糖代谢影响最大,可加强肝糖原分解,迅速升高血糖。这种作用是机体应付意外情况的一种能力。此外,它还有促进蛋白质、氨基酸及脂肪分解,增强机体代谢,升高体温等作用。
去甲肾上腺素的作用有所不同,它对血管作用强,是加压剂,而肾上腺素是强心剂,使心跳加速。去甲肾上腺素对糖代谢的作用较弱,只有肾上腺素的二十分之一。
麻黄碱的化学结构与生理功能都与肾上腺素相似,在药物上可代替肾上腺素,这类物质称为拟肾上腺素。
3作用机制
肾上腺素与细胞表面受体结合,使偶联的腺苷酸环化酶活化,催化ATP分解为cAMP和焦磷酸。cAMP使蛋白激酶活化,蛋白激酶可活化磷酸化酶激酶,后者再激活磷酸化酶,使糖原分解。这是一个五级的级联放大,信号被放大了300万倍,由10-8-10-10M的肾上腺素在几秒之内产生5mM的葡萄糖。
肾上腺素还可使肌糖原分解,产生乳酸;使脂肪细胞中的三酰甘油分解产生游离脂肪酸。此外,蛋白激酶还能使许多蛋白质磷酸化,如组蛋白、核糖体蛋白、脂肪细胞的膜蛋白、线粒体的膜蛋白、微粒体蛋白及溶菌酶等。
(二)甲状腺素
1.结构和生成
甲状腺素主要是四碘甲腺原氨酸(T4),也有少量三碘甲腺原氨酸(T3)和反三碘甲腺原氨酸(rT3)。甲状腺过氧化物酶首先催化碘离子生成活性碘(I2),再使甲状腺球蛋白中的酪氨酸碘化,生成3,5-二碘酪氨酸(DIT)。两分子DIT再作用形成甲状腺素。当甲状腺球蛋白被溶酶体中的蛋白酶水解后,T3、T4被放出,与肝脏合成的甲状腺素结合球蛋白结合而运输。
2.功能
可刺激糖、蛋白质、脂肪和盐的代谢,促进机体生长发育和组织分化,对中枢神经系统、循环系统、造血过程、肌肉活动等都有显着作用。总的表现是增强新陈代谢,引起耗氧量和产热量的增加,并促进智力和体质的发育。
3.作用机制
甲状腺素是脂溶性的,可进入细胞。与受体结合后,可使特异基因活化,促进转录,合成蛋白质。此外,在线粒体和质膜上也有其受体,可促进ATP形成。甲状腺素还能影响儿茶酚胺的作用。
(三)下丘脑及垂体激素
1.下丘脑激素 下丘脑分泌激素释放因子及释放抑制因子,调节垂体前叶功能。主要有:
l促甲状腺激素释放因子(TRF) 是焦谷-组-脯三肽,可促进促甲状腺激素(TSH)的分泌。N端的焦谷氨酸可防止氨肽酶破坏,C端有酰胺,可避免羧肽酶水解。
l促黄体生成激素释放因子(LRF) 是十肽,N端为焦谷氨酸,C端有酰胺。
l促肾上腺皮质激素释放因子(CRF) 是9-11肽。
l生长激素释放抑制因子(GRIF) 是14肽,分布广泛,多功能。不仅抑制生长激素的分泌,还抑制胰岛素、胰高血糖素及肠胃激素的分泌。
2.垂体激素 垂体分前叶、中叶和后叶三部分,由垂体柄与下丘脑相连。前叶和中叶可自行合成激素,后叶只能储存和分泌激素,其激素来自下丘脑。
(1)前叶激素 前叶直接受下丘脑控制,调节某些内分泌器官的发育及分泌,与动物的生长、性别及代谢密切相关。
l生长激素(GH) 是蛋白质,可刺激骨和软骨的生长,促进粘多糖和胶原的合成,影响蛋白质、糖类和脂类的代谢,最终影响体重的增长。
l促甲状腺激素(TSH) 是糖蛋白,可促进甲状腺的发育和分泌,从而影响全身代谢。
l促黄体生成激素(LH) 糖蛋白,促使卵泡发育成黄体,促进胆固醇转变成孕酮并分泌孕酮,阻止排卵,抑制动情,或促使睾丸的间质细胞发育,刺激睾丸分泌激素。
l促卵泡激素(FSH) 糖蛋白,促使卵巢或精巢发育,促进卵泡或精子生成和释放。
l催乳激素(LTH) 单链多肽,刺激乳汁分泌,刺激并维持黄体分泌孕酮。
l促肾上腺皮质激素(ACTH) 含39个残基的直链多肽,促进胆固醇转化成肾上腺皮质酮,并刺激肾上腺皮质分泌激素。通过cAMP起作用。
l脂肪酸释放激素(LPH) 有β和γ两种,可促进脂肪水解。生理条件下分泌量很少,分解脂肪的效果不明显。
l内啡肽(EP)类激素:有镇痛作用,在针刺麻醉时脑脊液中的含量增加。
前叶激素按结构可分为三类,生长激素和催乳激素为一类,都是单链蛋白;促甲状腺激素、促黄体生成激素、促卵泡激素都是糖蛋白,其α-亚基结构相似,β-亚基结构不同;促肾上腺皮质激素、脂肪酸释放激素和脑肽类激素都是由一种前体加工而成的。每一类的激素之间结构相近,序列同源,抗体有交叉反应,受体之间也有一定的亲和力。同一类的激素很可能是由同一基因进化而成的。
(2)中叶激素 只有促黑素细胞激素(MSH),分αβ两种,调节动物表皮细胞色素的增加及减少。
(3)后叶激素 包括催产素和加压素,都是九肽。前者使多种平滑肌收缩,具有催产及排乳作用;后者又称抗利尿激素(ADH),使小动脉收缩,可减少排尿,在大量失血时可升高血压。
(四)胰岛素
1.结构 胰岛素是胰岛β细胞分泌的,有AB两条链,分别有21和30个残基。两条链间由两个二硫键连接,A链还有一个链内二硫键。其高级结构是发挥活性所必须的。
2.作用 胰岛素的主要作用是降血糖。一方面可提高组织摄取葡萄糖的能力,另一方面可抑制肝糖原分解,促进肝糖原和肌糖原的合成。此外,胰岛素还抑制脂肪分解,促进蛋白质合成,并增加葡萄糖的有氧分解过程等。因此,胰岛素对靶细胞有着综合性的作用。
3.机制 葡萄糖可自由通过肝细胞,但通过心肌、骨骼肌和脂肪细胞时需要借助于质膜上的糖载体系统。这是这些组织利用糖的限速步骤,胰岛素可加速其转运过程。
胰岛素可促进肝脏中葡萄糖激酶的合成,这个酶是肝脏利用葡萄糖的第一个限速酶。在肌肉中葡萄糖磷酸化由己糖激酶催化,胰岛素可使其活性增加。
糖原合成酶有活化型(I)和非活化型(D)两种,蛋白激酶催化活化型转变为非活化型。肝细胞表面有胰岛素受体,胰岛素可增加肝脏cGMP浓度,促进cAMP分解,从而抑制蛋白激酶,促进糖原合成。
(五)胰高血糖素
1.结构 由胰岛α细胞分泌的多肽激素,由29个残基组成。首先合成的是胰高血糖素原,切去C端8肽后成为有活性的激素。
2.功能 升高血糖。可促进肝糖原分解,加快糖的异生,增加蛋白质和脂类的分解代谢。与肾上腺素不同,它不作用于肌糖原,也不被肾上腺素能阻断剂所抑制。
3.机制 与靶细胞表面受体结合,活化鸟苷酸条件蛋白,后者活化腺苷酸环化酶,使cAMP浓度升高,促进糖原分解。其受体是脂蛋白,而胰岛素受体是糖蛋白。
(六)甲状旁腺素
甲状旁腺素和降钙素都是由甲状旁腺分泌的多肽激素,都作用于骨基质及肾脏,调节钙磷代谢。前者升高血钙,后者降低血钙。此外,1,25-二羟胆钙化醇也是激素,由肾脏分泌,可促进小肠上皮细胞合成钙离子携带蛋白,增强对钙的吸收。
二、固醇激素
固醇激素都是环戊烷多氢菲衍生物,区别在于侧链不同。其合成都是由胆固醇转变为孕酮,再生成其他激素。
(一)肾上腺皮质激素
肾上腺皮质中可提取出数十种固醇结晶,其中7种统称肾上腺皮质激素,可矫正因切除肾上腺而出现的致死症状。其他为雄性激素、雌性激素及孕酮等。
皮质激素按生理功能可分为糖皮质激素和盐皮质激素。前者包括皮质醇、可的松和皮质酮,皮质醇最重要。其功能较复杂,主要是升高血糖,大剂量时还有减轻炎症和过敏反应的作用。后者的功能是保钠排钾,调节水盐代谢,以醛固酮的效应最强。
固醇激素可进入细胞,与细胞内受体结合,复合物经活化和移位,进入细胞核,诱导产生特异的蛋白质,发挥作用。
(二)性激素
雌性激素包括雌二醇和孕酮等。前者促进性器官发育,后者起安胎作用。雄性激素包括睾酮和雄酮等,可促进性器官发育。
雄激素和雌激素的结构很相似,可互相转化。在动物体内都有一定比例,保持平衡。
三、脂肪族激素
脂肪族激素指前列腺素(PG)。它是二十碳酸衍生物,最初发现于精液中。其实它在人体中广泛存在,作用多样。它不是由特定腺体产生的,有些还只能在产生的局部发挥作用,所以有人认为它不属于激素。
前列腺素有16种,其基本结构是前列腺烷酸,有一个环戊烷和两条侧链。根据取代基不同,可分为A-I等9类,其中EFABI是重要的五种。
各种前列腺素结构相似,功能却相差甚远。PGE和PGF对生殖系统有显着作用,PGF2α可用于引产,PGI2对它有拮抗作用。许多组织有前列腺素表面受体,结合后可改变cAMP浓度,但对不同组织作用不同。此外,前列腺素可增加发炎,而阿司匹林可干扰其酶促合成,能减少发炎。
㈡ 心理学上胜肽的意思是什么
心理学中的胜肽:
在心理学上,如果一次又一次地做一些事情,人体一些神经细胞之间就会建立一种长期而固定的关系。例如,如果每天都愤怒、沮丧和痛苦,那么每天都在抱怨和憎恨这个世界。所以,每天都在重复地连接和整合神经网络。随着时间的推移,这已经成为我们固定的情绪模式。
(2)胶原特殊序列偏高什么意义扩展阅读:
当的身体或大脑产生某种情绪时,我们的下丘脑会立即合成一种叫做肽(一种氨基酸)的化学物质。当血液到达我们身体的每一个细胞时,它被每一个细胞中的数千个受体所接受。随着时间的推移,受体对某些人来说是确定的。
肽有一种特殊的食欲,产生饥饿感。所以如果你长时间不生气,你的细胞会让你因为生理需要而想发脾气。因此,由于需要一种肽,我们的大脑会自动过滤掉细胞想要吸引相同事物的信息、想法和想法。
比如,我们把自己设为“弱者,受害者”的角色,当这种复杂的情况出现时,所有的情况都可能被认为对我们的身心有害,其实,这就是“肽”的角色,大脑过滤现实世界。
㈢ 总i型前胶原氨基末端肽高是怎么回事
蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。
(一)氨基酸
在进行合成多肽链之前,必须先经过活化,然后再与其特异的trna结合,带到mrna相应的位置上,这个过程靠氨基酰trna合成酶催化,此酶催化特定的氨基酸与特异的trna相结合,生成各种氨基酰trna.每种氨基酸都靠其特有合成酶催化,使之和相对应的trna结合,在氨基酰trna合成酶催化下,利用atp供能,在氨基酸羧基上进行活化,形成氨基酰-amp,再与氨基酰trna合成酶结合形成三联复合物,此复合物再与特异的trna作用,将氨基酰转移到trna的氨基酸臂(即3'-末端cca-oh)上原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸trna,由n10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。
前面讲过运载同一种氨基酸的一组不同trna称为同功trna。一组同功trna由同一种氨酰基trna合成酶催化。氨基酰trna合成酶对trna和氨基酸两者具有专一性,它对氨基酸的识别特异性很高,而对trna识别的特异性较低。
氨基酰trna合成酶是如何选择正确的氨基酸和trna呢?按照一般原理,酶和底物的正确结合是由二者相嵌的几何形状所决定的,只有适合的氨基酸和适合的trna进入合成酶的相应位点,才能合成正确的氨酰基trna。现在已经知道合成酶与l形trna的内侧面结合,结合点包括接近臂,dhu臂和反密码子臂d柄、反密码子和可变环与酶反应
乍看起来,反密码子似乎应该与氨基酸的正确负载有关,对于某些trna也确实如此,然而对于大多数trna来说,情况并非如此,人们早就知道,当某些trna上的反密码子突变后,但它们所携带的氨工酸却没有改变。1988年,候稚明和schimmel的实验证明丙氨酸trna酸分子的氨基酸臂上g3:u70这两个碱基发生突变时则影响到丙氨酰trna合成酶的正确识别,说明g3:u70是丙氨酸trna分子决定其本质的主要因素。trna分子上决定其携带氨基酸的区域叫做副密码子。一种氨基酰trna合成酶可以识别以一组同功trna,这说明它们具有共同特征。例如三种丙氨酸trna(trnaalm/cua,trnaaim/ggc,trnaain/ugc都具有g3:u70副密码子。)但没有充分的证据说明其它氨基酰trna合成酶也识别同功trna组中相同的副密码子。另外副密码子也没有固定的位置,也可能并不止一个碱基对。
(二)多肽链合成的起始
核蛋白体大小亚基,mrna起始trna和起始因子共同参与肽链合成的起始。
1、大肠杆菌细胞翻译起始复合物形成的过程:
(1)核糖体30s小亚基附着于mrna起始信号部位:原核生物中每一个mrna都具有其核糖体结合位点,它是位于aug上游8-13个核苷酸处的一个短片段叫做sd序列。这段序列正好与30s小亚基中的16s rrna3’端一部分序列互补,因此sd序列也叫做核糖体结合序列,这种互补就意味着核糖体能选择mrna上aug的正确位置来起始肽链的合成,该结合反应由起始因子3(if-3)介导,另外if-1促进if-3与小亚基的结合,故先形成if3-30s亚基-mrna三元复合物。
(2)30s前起始复合物的形成:在起始因子2作用下,甲酰蛋氨酰起 始trna与mrna分子中的aug相结合,即密码子与反密码子配对,同时if3从三元复合物中脱落,形成30s前起始复合物,即if2-3s亚基-mrna-fmet-trnafmet复合物,此步需要gtp和mg2 参与。
(3)70s起始复合物的形成:50s亚基上述的30s前起始复合物结合,同时if2脱落,形成70s起始复合物,即30s亚基-mrna-50s亚基-mrna-fmet-trnafmet复合物。此时fmet-trnafmet占据着50s亚基的肽酰位。而a位则空着有待于对应mrna中第二个密码的相应氨基酰trna进入,从而进入延长阶段,2、真核细胞蛋白质合成的起始
真核细胞蛋白质合成起始复合物的形成中需要更多的起始因子参与,因此起始过程也更复杂。
(1)需要特异的起始trna即,-trnafmet,并且不需要n端甲酰化。已发现的真核起始因子有近10种(eukaryote initiation factor,eif)
(2)起始复合物形成在mrna5’端aug上游的帽子结构,(除某些病毒mrna外)
(3)atp水解为adp供给mrna结合所需要的能量。真核细胞起始复合物的形成过程是:翻译起始也是由eif-3结合在40s小亚基上而促进80s核糖体解离出60s大亚基开始,同时eif-2在辅eif-2作用下,与met-trnafmet及gtp结合,再通过eif-3及eif-4c的作用,先结合到40s小亚基,然后再与mrna结合。
mrna结合到40s小亚基时,除了eif-3参加外,还需要eif-1、eif-4a及eif-4b并由atp小解为adp及pi来供能,通过帽结合因子与mrna的帽结合而转移到小亚基上。但是在mrna5’端并未发现能与小亚基18srna配对的s-d序列。目前认为通过帽结合后,mrna在小亚基上向下游移动而进行扫描,可使mrna上的起始密码aug在met-trnafmet的反密码位置固定下来,进行翻译起始。
通过eif-5的作用,可使结合met-trnafmet·gtp及mrnar40s小亚基与60s大亚基结合,形成80s复合物。eif-5具有gtp酶活性,催化gtp水解为gdp及pi,并有利于其它起始因子从40s小亚基表面脱落,从而有利于40s与60s两个亚基结合起来,最后经eif-4d激活而成为具有活性的80smet-trnafmet· mrna起始复合物。
(三)多肽链的延长
在多肽链上每增加一个氨基酸都需要经过进位,转肽和移位三个步骤。
(1)为密码子所特定的氨基酸trna结合到核蛋白体的a位,称为进位。氨基酰trna在进位前需要有三种延长因子的作用,即,热不稳定的ef(unstable temperature,ef)ef-tu,热稳定的ef(stable temperature ef,ef-ts)以及依赖gtp的转位因子。ef-tu首先与gtp结合,然后再与氨基酰trna结合成三元复合物,这样的三元复合物才能进入a位。此时gtp水解成gdp,ef-tu和gdp与结合在a位上的氨基酰trna分离
肽键的形成
①核蛋白体“给位”上携甲酰蛋氨酰 基(或肽酰)的trna
②核蛋白体“受体”上新进入的氨基酰trna;
③失去甲酰蛋氨酰基(或肽酰)后,即将从核蛋白体脱落的trna;
④接受甲酰蛋氨酰基(或肽酰)后已增长一个氨基酸残基的肽键
(2)转肽--肽键的形成(peptide bond formation)
在70s起始复合物形成过程中,核糖核蛋白体的p位上已结合了起始型甲酰蛋氨酸trna,当进位后,p位和a位上各结合了一个氨基酰trna,两个氨基酸之间在核糖体转肽酶作用下,p位上的氨基酸提供α-cooh基,与a位上的氨基酸的α-nh2形成肽键,从而使p位上的氨基酸连接到a位氨基酸的氨基上,这就是转肽。转肽后,在a位上形成了一个二肽酰trna(图18-13)。
(3)移位(translocation)
转肽作用发生后,氨基酸都位于a位,p位上无负荷氨基酸的trna就此脱落,核蛋白体沿着mrna向3’端方向移动一组密码子,使得原来结合二肽酰trna的a位转变成了p位,而a位空出,可以接受下一个新的氨基酰trna进入,移位过程需要ef-2,gtp和mg2 的参加(图18-14)。
以后,肽链上每增加一个氨基酸残基,即重复上述进位,转肽,移位的步骤,直至所需的长度,实验证明mrna上的信息阅读是从5’端向3’端进行,而肽链的延伸是从氮基端到羧基端。所以多肽链合成的方向是n端到c端
(四)翻译的终止及多肽链的释放
无论原核生物还是真核生物都有三种终止密码子uag,uaa和uga。没有一个trna能够与终止密码子作用,而是靠特殊的蛋白质因子促成终止作用。这类蛋白质因子叫做释放因子,原核生物有三种释放因子:rf1,rf2t rf3。rf1识别uaa和uag,rf2识别uaa和uga。rf3的作用还不明确。真核生物中只有一种释放因子erf,它可以识别三种终止密码子。
不管原核生物还是真核生物,释放因子都作用于a位点,使转肽酶活性变为水介酶活性,将肽链从结合在核糖体上的trna的cca末凋上水介下来,然后mrna与核糖体分离,最后一个trna脱落,核糖体在if-3作用下,解离出大、小亚基。解离后的大小亚基又重新参加新的肽链的合成,循环往复,所以多肽链在核糖体上的合成过程又称核糖体循环(ribosome cycle)(图18-16)。
(五)多核糖体循环
上述只是单个核糖体的翻译过程,事实上在细胞内一条mrna链上结合着多个核糖体,甚至可多到几百个。蛋白质开始合成时,第一个核糖体在mrna的起始部位结合,引入第一个蛋氨酸,然后核糖体向mrna的3’端移动一定距离后,第二个核糖体又在mrna的起始部位结合,现向前移动一定的距离后,在起始部位又结合第三个核糖体,依次下去,直至终止。两个核糖体之间有一定的长度间隔,每个核糖体都独立完成一条多肽链的合成,所以这种多核糖体可以在一条mrna链上同时合成多条相同的多肽链,这就大大提高了翻译的效
多聚核糖体的核糖体个数,与模板mrna的长度有关,例如血红蛋白的多肽链mnra编码区有450个核苷酸组成,长约150nm 。上面串连有5-6个核糖核蛋白体形成多核糖体。而肌凝蛋白的重链mrna由5400个核苷酸组成,它由60多个核糖体构成多核糖体完成多肽链的合成
㈣ 胶原蛋白的分布
在水产动物体内胶原蛋白含量高于陆生动物,如鲢鱼、鳙鱼和草鱼鱼皮的蛋白质含量分别为25.9%、23.6%和29.8%,均高于各自相应鱼肉的蛋白质含量:17.8%、15.3%和16.6%。而鱼皮中的胶原含量最高可超过其蛋白质总量的80%,较鱼体的其它部位要高许多,有研究报道真鲷鱼皮中胶原蛋白占粗蛋白的80.5%,鳗鲡则高达87.3%。如此高的含量意味着得率也高,如小鲔鲣42.5%;日本海鲈40.7%;香鱼53.6%;黄海鲷40.1%;竹荚鱼43.5%(均以干重计)。但胶原蛋白的种类要少得多,已从鱼类中分离鉴定出的胶原类型有:广泛分布在真皮、骨、鳞、鳔、肌肉等处的I型、软骨和脊索的Ⅱ型和Ⅺ型以及肌肉的V型。而鱼皮和鱼骨所含的Ⅰ型胶原蛋白是其主要胶原蛋白。此外,还发现ⅩⅧ型胶原,然而哺乳动物中含量比较丰富的Ⅲ型胶原,在水产动物中尚未发现。其中只有Ⅰ型胶原蛋白的价格人们才可以接受;其它类型的胶原如Ⅲ、Ⅳ、Ⅴ等仅在研究中制备,由于价格昂贵都不宜于大量生产。
由于无脊椎动物与脊椎动物在进化上相距遥远,它们的胶原性质存在明显的差异。水产无脊椎动物的胶原主要可分为两类,类Ⅰ型及类Ⅴ型胶原,均相当于脊椎动物的Ⅰ型胶原。其中类Ⅰ型胶原比较富含有丙氨酸和糖结合型的羟赖氨酸,广泛的存在于软体动物的各种器官中,包括:乌贼类的皮和头盖软骨、章鱼的皮鲍的肌肉和外套膜等。类Ⅴ型胶原是丙氨酸含量比较少、富含糖结合型羟赖氨酸,已从矶海葵的中胶层、节足动物虾类和蟹类的肌肉及皮下膜以及原索动物罗氏石勃卒的肌膜体中分离出来。与脊椎动物相比,水产无脊椎动物的胶原显着难溶,富含于羟赖氨酸,尤其是糖结合型含量多,而且纤维的直径小于50nm。有人对海参胶原研究发现,刺参体壁含蛋白 3.3%,其中70%为胶原蛋白。氨基酸分析,胶原富含丙氨酸和羟脯氨酸,但羟赖氨酸含量较少,SDS电泳及SP凝胶柱分析发现其胶原组成为(α1)2α2。还有人从仿刺参(S.japonicus)提取胶原蛋白,利用 EDTA 和 Tris-HCl 浸泡溶涨,用氢氧化钠除去杂质和非胶原蛋白,采用胃蛋白酶促溶提取粗制胶原,通过盐析和透析获取精致胶原蛋白,并进一步利用 Sephacryl S-300 HR 凝胶过滤和 DEAE-52 阴离子交换除去多糖,获取胶原蛋白纯品。SDS-PAGE 电泳表明胶原分子的组成为 (α1)3,且α链类似于脊椎动物Ⅰ型胶原的α1链,热收缩温度为57℃,低于牛皮胶原5℃。还有人对采自日本Senzaki 海湾的Stomolopus meleagri水母的外伞组织进行了分析。整个中胶层被分成三部分,利用醋酸首先将冻干的水母中胶层分为酸溶性蛋白和酸不溶性物质,利用NaCl溶液将酸溶性蛋白分为酸溶性胶原蛋白和酸溶性非胶原蛋白,而不溶入醋酸的中胶层经胃蛋白酶处理后大多变为可溶性的胶原质。然后利用氨基酸分析仪对分离得到的三部分的组成分别进行分析。发现该水母外伞中胶原蛋白含量很高,大约占干重的 46.4%。经 SDS 聚丙烯酰胺凝胶电泳分析其胶原蛋白是由三个独特α 链组成,按照它们的移动位置分别分别确定为 α1、α3、α2链。氨基酸分析表明S.meleagri 水母外伞胶原质中甘氨酸含量最高,每1000个氨基酸残基含有309个甘氨酸,其次为谷氨酸、脯氨酸和丙氨酸,分别为98、82和82个残基,羟基脯氨和羟基赖氨酸数也较高,分别为40和27。外伞中高的胶原蛋白含量表明水母资源是一个潜在的胶原蛋白源。
Ⅰ型胶原分子长度约300nm,直径约1.5nm,呈棒状,由三条肽链组成,其中有两条α(Ⅰ)链,一条
α(Ⅱ)链。对机体功能作用最强。α(Ⅰ)链和α(Ⅱ)链之间的氨基酸序列只有微小的差异。有人利用Ⅰ型胶原蛋白的电脑模型来模拟结缔组织的外基质结构,结果表明,用其它一些基团取代Ⅰ型胶原蛋白两条链上氨基乙酸就会导致骨合成异常。第3条α链多存在于绝大多数真骨鱼类,尤其是鱼皮,其他陆生脊椎动物没有。由3条异种α链形成的单一型杂分子α1(Ⅰ)α2(Ⅰ)α3(Ⅰ)组成,而非[α1(Ⅰ)]2α2(Ⅰ)。有人研究了黑石首鱼和羊头海鲷的骨和鳞的酸性胶原蛋白(ASC)的电泳类型,发现在电泳谱带上可以清楚地看到β、γ、α1和α2组分,且α1的分子量为130 kD,α2的分子量为110 kD。因此,在某些鱼类中,与其他组织,如肌肉和膀胱相比较,鱼皮胶原蛋白中的α3(Ⅰ)链更适宜传递。
IV型胶原蛋白非常细小而且呈线性分布在组织内部,是连接表皮和真皮的主要要素。Ⅴ型胶原的肽链由2 条α1链和 1 条α2链或由3条α1链组成,存在 3 种组装形式:[α1(Ⅴ)]3、[α1(Ⅴ)]2α2(Ⅴ)和α1(Ⅴ)、α2(Ⅴ)、α3(Ⅴ),其中以[α1(Ⅴ)]2α2(Ⅴ)为主。Ⅴ型胶原分布在细胞周围以及Ⅰ型胶原的周围,可能在基膜和结缔组织之间起着桥梁作用,已经从数种鱼类肌肉中分离出来。XV型胶原蛋白分布较广而且多分布在血管、神经组织的外围地带,而且其与角化细胞肿瘤黑素细胞肿瘤发生有关。
Ⅺ型胶原是异三聚体,其组成为α1 (Ⅺ)α2 (Ⅺ)α3 (Ⅺ),Ⅺ型胶原是软骨的微量成分,在软骨胶原纤维的形成和软骨基质的组成中起着重要作用,且常与Ⅱ型胶原共存。陆生生物的软骨组织较水生生物含量高的多,所以Ⅱ型胶原的研究的对象大多是陆生生物,虽然在1984 年已经从鲨鱼的软骨中分离出来Ⅱ型胶原,但是从水产动物提取Ⅱ型胶原的研究并不多。
ⅩⅧ型胶原发现的相对较晚,同源性较高,还有不同的亚类,主要存在于肺、肝脏和肾脏等组织中。属于被称之为multi-plexin的特殊胶原亚族,含有其他胶原所没有的C末端非三螺旋区(non-triple-heli-cal regions,NC1),这一特殊结构使其与其他仅由三螺旋结构组成的胶原相比拥有更好的灵活性。ⅩⅧ型胶原的研究主要集中在医学和分子生物学领域,如胚胎中的转录表达。
㈤ B-胶原特殊序列超标是什么病
可能对应骨质疏松。
㈥ 仃经后B一胶原特殊序列323ng/L正常吗
答案:B
思路:首先看一有A-P,二中有A-P-G-L,有两个重复,确定第一个序列A-P-G-L。
接着A-P-G-L最后是G-L,返回到一中,有G-L-B-T,有两个重复确定第二个序列A-P-G-L-B-T。
以此类推从二中得到第三个序列A-P-G-L-B-T-C。
已经确定了7个氨基酸还有三个氨基酸,从片段上来说一种还有C-T以及H-V,第三序列末尾是C,可以把C-T接上,最后还有H-V随便在开头还是结尾,即A-P-G-L-B-T-C-T-H-V和H-V-A-P-G-L-B-T-C,答案中只有B选项正确。
打字好辛苦的,给分吧。。。
㈦ B-胶原特殊序列超标是什么病
摘要 你好,该序列超标可能是人体出现了骨密度降低,认为是有骨质增生,常出现了人体的下肢疼痛,有时伴有了腰痛,下肢酸困不适,影响了正常的生活,所以需尽早治疗。