Ⅰ 肝纤维化指标中3型前胶原氨基端肽偏高什么意思
一般是有肝脏代谢受伤导致的,还是需要配合医院的治疗,积极的使用保肝的药物。
Ⅱ 如何测定I型前胶原羧基端前肽
I型前胶原羧基端前肽的正常值:50-200ug/L
测定I型前胶原羧基端前肽的临床意义表现在I型前胶原羧基端前肽增高:见于儿童发育期、妊娠最后3个月、骨肿瘤,特别是前列腺癌骨转移、畸形性骨炎、酒精性肝炎和肺纤维化等。
I型前胶原羧基端前肽降低:见于绝经期后骨质疏松病人经雌激素治疗6个月后可降低30%,但其降低的机制尚不清楚。
(2)型前胶原氨基肽是什么扩展阅读:
I型前胶原羧基端前肽(是骨组织中惟一的胶原,占骨基质的90%以上。血清中I型前胶原羧基端前肽的水平是反映成骨细胞活动和骨形成以及反映I型胶原合成速率的特异指标。它可以被肝脏吸收,通过上皮细胞甘露糖受体结合而被清除,所以易受肝功能的影响。
血清Ⅰ型前胶原羧基端前肽(PICP):是成骨细胞合成胶原时的中间产物,也是反映成骨细胞活动状态的敏感指标。PICP升高可见于畸形性骨炎、骨肿瘤、儿童发育期、妊娠后期,老年性骨质疏松症PICP变化不明显。
Ⅲ 3型前胶原n端肽参考值是0一12检查结果是16.33严重嘛
总i型前胶原氨基端肽是个3长很专业和基础名词, 贵是指合成制备服胶原蛋白---胶原纤维的前体. 总i型前胶原氨基端肽高胶原蛋白病发病相关 (猆类风湿, 红班狼疮...), 有时在心肌梗死时有显现.
Ⅳ 胶原肽的功效与作用 胶原肽有什么功效
核心功效
延缓皮肤老化、保湿锁水、降血压
胶原肽的简介
一个氨基酸于另一个氨基酸以肽键相连,所形成的化合物称为肽。肽中含有的氨基酸数少于10个称为寡肽,超过10个称为多肽。一条或数条多肽链组成了蛋白质。一个蛋白分子通常含有50个以上的氨基酸。胶原肽能够更有效地渗入角质层、真皮层,起到延长皮肤细胞寿命、抑制细胞膜脂质过氧化、抵抗氧化自由基对DNA的攻击、抑制酪氨酸的活性、提高皮肤免疫能力、提高皮肤持水保水能力、促进胶原的合成和真皮细胞透明质酸的合成等多种功效。
功效作用
1、延缓皮肤老化,胶原肽能改善皮肤原有状态,进而修复受损肌肤,促进细胞分裂,加速生长。
2、保湿锁水,胶原肽也是一种修复型的胶原蛋白,主要是锁住肌肤的水分,增强皮肤的弹性,防止皮肤衰老,干燥,松弛,使肌肤更有弹性,更水润,从而达到美容养颜的效果。
3、降血压,胶原肽可以抑制血管紧张素转化酶的活性,增强血管的弹性,可以帮助降血压,降血脂。比较适合于一些生活作息不规律,熬夜上火,缺少运动,高血压的人群。
适宜人群
工作劳累者、睡眠不足者、皮肤松弛者、
禁忌人群
重疾者、孕妇、乳腺增生者、肿瘤患者。
不宜同食
无特殊同食禁忌。
Ⅳ 贫血 iii型前胶原氨基端肽偏高什么意思
Ⅵ 1型胶原前肽属于非胶原蛋白
不属于。根据调查1型胶原前肽的相关资料得知,1型胶原前肽不属于非胶原蛋白。丨型前胶原羧基端前肽(PICP)是由成骨细胞的前体细胞合成,含C-端延伸段,这些延伸段又称前肽,在形成纤维和释放入血时从I型胶原上断裂下来,PICP以等分子释放入血,由于PICP的解离和一型胶原的合成比例为1:1,因此测定丨型前胶原羧基端前肽可反映一型胶原的合成情况和骨转换情况。
Ⅶ i型胶原前肽属于非胶原蛋白的是
i型胶原前肽属于非胶原蛋白的是骨组织。根据查询相关资料信息Ⅰ型胶原是人体最丰富的胶原蛋白形式,是骨组织中唯一的胶原,占骨质的90%,i型胶原前肽属于非胶原蛋白的是骨组织。Ⅰ型胶原前肽包括Ⅰ型胶原氨基前肽和Ⅰ型胶原羧基前肽,成骨细胞的前体细胞合成Ⅰ型前胶原,分泌至细胞外液,在内切酶作用下去除氨基及羧基端肽,即Ⅰ型胶原氨基前肽和Ⅰ型胶原羧基前肽,是反映骨形成的指标。
Ⅷ 总i型前胶原氨基末端肽高是怎么回事
蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。
(一)氨基酸
在进行合成多肽链之前,必须先经过活化,然后再与其特异的trna结合,带到mrna相应的位置上,这个过程靠氨基酰trna合成酶催化,此酶催化特定的氨基酸与特异的trna相结合,生成各种氨基酰trna.每种氨基酸都靠其特有合成酶催化,使之和相对应的trna结合,在氨基酰trna合成酶催化下,利用atp供能,在氨基酸羧基上进行活化,形成氨基酰-amp,再与氨基酰trna合成酶结合形成三联复合物,此复合物再与特异的trna作用,将氨基酰转移到trna的氨基酸臂(即3'-末端cca-oh)上原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸trna,由n10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。
前面讲过运载同一种氨基酸的一组不同trna称为同功trna。一组同功trna由同一种氨酰基trna合成酶催化。氨基酰trna合成酶对trna和氨基酸两者具有专一性,它对氨基酸的识别特异性很高,而对trna识别的特异性较低。
氨基酰trna合成酶是如何选择正确的氨基酸和trna呢?按照一般原理,酶和底物的正确结合是由二者相嵌的几何形状所决定的,只有适合的氨基酸和适合的trna进入合成酶的相应位点,才能合成正确的氨酰基trna。现在已经知道合成酶与l形trna的内侧面结合,结合点包括接近臂,dhu臂和反密码子臂d柄、反密码子和可变环与酶反应
乍看起来,反密码子似乎应该与氨基酸的正确负载有关,对于某些trna也确实如此,然而对于大多数trna来说,情况并非如此,人们早就知道,当某些trna上的反密码子突变后,但它们所携带的氨工酸却没有改变。1988年,候稚明和schimmel的实验证明丙氨酸trna酸分子的氨基酸臂上g3:u70这两个碱基发生突变时则影响到丙氨酰trna合成酶的正确识别,说明g3:u70是丙氨酸trna分子决定其本质的主要因素。trna分子上决定其携带氨基酸的区域叫做副密码子。一种氨基酰trna合成酶可以识别以一组同功trna,这说明它们具有共同特征。例如三种丙氨酸trna(trnaalm/cua,trnaaim/ggc,trnaain/ugc都具有g3:u70副密码子。)但没有充分的证据说明其它氨基酰trna合成酶也识别同功trna组中相同的副密码子。另外副密码子也没有固定的位置,也可能并不止一个碱基对。
(二)多肽链合成的起始
核蛋白体大小亚基,mrna起始trna和起始因子共同参与肽链合成的起始。
1、大肠杆菌细胞翻译起始复合物形成的过程:
(1)核糖体30s小亚基附着于mrna起始信号部位:原核生物中每一个mrna都具有其核糖体结合位点,它是位于aug上游8-13个核苷酸处的一个短片段叫做sd序列。这段序列正好与30s小亚基中的16s rrna3’端一部分序列互补,因此sd序列也叫做核糖体结合序列,这种互补就意味着核糖体能选择mrna上aug的正确位置来起始肽链的合成,该结合反应由起始因子3(if-3)介导,另外if-1促进if-3与小亚基的结合,故先形成if3-30s亚基-mrna三元复合物。
(2)30s前起始复合物的形成:在起始因子2作用下,甲酰蛋氨酰起 始trna与mrna分子中的aug相结合,即密码子与反密码子配对,同时if3从三元复合物中脱落,形成30s前起始复合物,即if2-3s亚基-mrna-fmet-trnafmet复合物,此步需要gtp和mg2 参与。
(3)70s起始复合物的形成:50s亚基上述的30s前起始复合物结合,同时if2脱落,形成70s起始复合物,即30s亚基-mrna-50s亚基-mrna-fmet-trnafmet复合物。此时fmet-trnafmet占据着50s亚基的肽酰位。而a位则空着有待于对应mrna中第二个密码的相应氨基酰trna进入,从而进入延长阶段,2、真核细胞蛋白质合成的起始
真核细胞蛋白质合成起始复合物的形成中需要更多的起始因子参与,因此起始过程也更复杂。
(1)需要特异的起始trna即,-trnafmet,并且不需要n端甲酰化。已发现的真核起始因子有近10种(eukaryote initiation factor,eif)
(2)起始复合物形成在mrna5’端aug上游的帽子结构,(除某些病毒mrna外)
(3)atp水解为adp供给mrna结合所需要的能量。真核细胞起始复合物的形成过程是:翻译起始也是由eif-3结合在40s小亚基上而促进80s核糖体解离出60s大亚基开始,同时eif-2在辅eif-2作用下,与met-trnafmet及gtp结合,再通过eif-3及eif-4c的作用,先结合到40s小亚基,然后再与mrna结合。
mrna结合到40s小亚基时,除了eif-3参加外,还需要eif-1、eif-4a及eif-4b并由atp小解为adp及pi来供能,通过帽结合因子与mrna的帽结合而转移到小亚基上。但是在mrna5’端并未发现能与小亚基18srna配对的s-d序列。目前认为通过帽结合后,mrna在小亚基上向下游移动而进行扫描,可使mrna上的起始密码aug在met-trnafmet的反密码位置固定下来,进行翻译起始。
通过eif-5的作用,可使结合met-trnafmet·gtp及mrnar40s小亚基与60s大亚基结合,形成80s复合物。eif-5具有gtp酶活性,催化gtp水解为gdp及pi,并有利于其它起始因子从40s小亚基表面脱落,从而有利于40s与60s两个亚基结合起来,最后经eif-4d激活而成为具有活性的80smet-trnafmet· mrna起始复合物。
(三)多肽链的延长
在多肽链上每增加一个氨基酸都需要经过进位,转肽和移位三个步骤。
(1)为密码子所特定的氨基酸trna结合到核蛋白体的a位,称为进位。氨基酰trna在进位前需要有三种延长因子的作用,即,热不稳定的ef(unstable temperature,ef)ef-tu,热稳定的ef(stable temperature ef,ef-ts)以及依赖gtp的转位因子。ef-tu首先与gtp结合,然后再与氨基酰trna结合成三元复合物,这样的三元复合物才能进入a位。此时gtp水解成gdp,ef-tu和gdp与结合在a位上的氨基酰trna分离
肽键的形成
①核蛋白体“给位”上携甲酰蛋氨酰 基(或肽酰)的trna
②核蛋白体“受体”上新进入的氨基酰trna;
③失去甲酰蛋氨酰基(或肽酰)后,即将从核蛋白体脱落的trna;
④接受甲酰蛋氨酰基(或肽酰)后已增长一个氨基酸残基的肽键
(2)转肽--肽键的形成(peptide bond formation)
在70s起始复合物形成过程中,核糖核蛋白体的p位上已结合了起始型甲酰蛋氨酸trna,当进位后,p位和a位上各结合了一个氨基酰trna,两个氨基酸之间在核糖体转肽酶作用下,p位上的氨基酸提供α-cooh基,与a位上的氨基酸的α-nh2形成肽键,从而使p位上的氨基酸连接到a位氨基酸的氨基上,这就是转肽。转肽后,在a位上形成了一个二肽酰trna(图18-13)。
(3)移位(translocation)
转肽作用发生后,氨基酸都位于a位,p位上无负荷氨基酸的trna就此脱落,核蛋白体沿着mrna向3’端方向移动一组密码子,使得原来结合二肽酰trna的a位转变成了p位,而a位空出,可以接受下一个新的氨基酰trna进入,移位过程需要ef-2,gtp和mg2 的参加(图18-14)。
以后,肽链上每增加一个氨基酸残基,即重复上述进位,转肽,移位的步骤,直至所需的长度,实验证明mrna上的信息阅读是从5’端向3’端进行,而肽链的延伸是从氮基端到羧基端。所以多肽链合成的方向是n端到c端
(四)翻译的终止及多肽链的释放
无论原核生物还是真核生物都有三种终止密码子uag,uaa和uga。没有一个trna能够与终止密码子作用,而是靠特殊的蛋白质因子促成终止作用。这类蛋白质因子叫做释放因子,原核生物有三种释放因子:rf1,rf2t rf3。rf1识别uaa和uag,rf2识别uaa和uga。rf3的作用还不明确。真核生物中只有一种释放因子erf,它可以识别三种终止密码子。
不管原核生物还是真核生物,释放因子都作用于a位点,使转肽酶活性变为水介酶活性,将肽链从结合在核糖体上的trna的cca末凋上水介下来,然后mrna与核糖体分离,最后一个trna脱落,核糖体在if-3作用下,解离出大、小亚基。解离后的大小亚基又重新参加新的肽链的合成,循环往复,所以多肽链在核糖体上的合成过程又称核糖体循环(ribosome cycle)(图18-16)。
(五)多核糖体循环
上述只是单个核糖体的翻译过程,事实上在细胞内一条mrna链上结合着多个核糖体,甚至可多到几百个。蛋白质开始合成时,第一个核糖体在mrna的起始部位结合,引入第一个蛋氨酸,然后核糖体向mrna的3’端移动一定距离后,第二个核糖体又在mrna的起始部位结合,现向前移动一定的距离后,在起始部位又结合第三个核糖体,依次下去,直至终止。两个核糖体之间有一定的长度间隔,每个核糖体都独立完成一条多肽链的合成,所以这种多核糖体可以在一条mrna链上同时合成多条相同的多肽链,这就大大提高了翻译的效
多聚核糖体的核糖体个数,与模板mrna的长度有关,例如血红蛋白的多肽链mnra编码区有450个核苷酸组成,长约150nm 。上面串连有5-6个核糖核蛋白体形成多核糖体。而肌凝蛋白的重链mrna由5400个核苷酸组成,它由60多个核糖体构成多核糖体完成多肽链的合成
Ⅸ l型胶原氨基末端肽(NTX)是什么东西,我只知道是与骨形成有关的,有木有人帮忙回答一下
l型胶原是成骨细胞分泌的骨基质的主要成分,之后进行矿化,形成新的骨
Ⅹ 胶原肽是什么
胶原肽是一种修复型的胶原蛋白,主要是锁住肌肤的水分,增强皮肤的弹性,防止皮肤衰老、干燥、松弛,可以美白皮肤、延缓衰老。胶原肽还可以促进体内骨胶原的合成,可以预防骨质疏松,增强骨骼的柔韧性。
胶原肽是一种修复型的胶原蛋白,主要是锁住肌肤的水分,增强皮肤的弹性,防止皮肤衰老,干燥,松弛,可以美白皮肤,延缓衰老。胶原肽还可以促进体内骨胶原的合成,可以预防骨质疏松,增强骨骼的柔韧性。胶原肽可以抑制血管紧张素转化酶的活性,增强血管的弹性,可以帮助降血压,降血脂。比较适合于一些生活作息不规律,熬夜上火,缺少运动,高血压,高血脂的人群。