A. 1型胶原羧基端前肽71.7正常吗
正常。
正常指标:I型前胶原羧基端前肽的正常值:50-200ug/L ,异常指标:高于或者低于50-200ug/L,属于异常的。
丨型前胶原羧基端前肽(PICP)是由成骨细胞的前体细胞合成,含C-端延伸段,这些延伸段又称前肽。
B. l型胶原氨基末端肽(NTX)是什么东西,我只知道是与骨形成有关的,有木有人帮忙回答一下
l型胶原是成骨细胞分泌的骨基质的主要成分,之后进行矿化,形成新的骨
C. 总i型前胶原氨基末端肽高是怎么回事
蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。
(一)氨基酸
在进行合成多肽链之前,必须先经过活化,然后再与其特异的trna结合,带到mrna相应的位置上,这个过程靠氨基酰trna合成酶催化,此酶催化特定的氨基酸与特异的trna相结合,生成各种氨基酰trna.每种氨基酸都靠其特有合成酶催化,使之和相对应的trna结合,在氨基酰trna合成酶催化下,利用atp供能,在氨基酸羧基上进行活化,形成氨基酰-amp,再与氨基酰trna合成酶结合形成三联复合物,此复合物再与特异的trna作用,将氨基酰转移到trna的氨基酸臂(即3'-末端cca-oh)上原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸trna,由n10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。
前面讲过运载同一种氨基酸的一组不同trna称为同功trna。一组同功trna由同一种氨酰基trna合成酶催化。氨基酰trna合成酶对trna和氨基酸两者具有专一性,它对氨基酸的识别特异性很高,而对trna识别的特异性较低。
氨基酰trna合成酶是如何选择正确的氨基酸和trna呢?按照一般原理,酶和底物的正确结合是由二者相嵌的几何形状所决定的,只有适合的氨基酸和适合的trna进入合成酶的相应位点,才能合成正确的氨酰基trna。现在已经知道合成酶与l形trna的内侧面结合,结合点包括接近臂,dhu臂和反密码子臂d柄、反密码子和可变环与酶反应
乍看起来,反密码子似乎应该与氨基酸的正确负载有关,对于某些trna也确实如此,然而对于大多数trna来说,情况并非如此,人们早就知道,当某些trna上的反密码子突变后,但它们所携带的氨工酸却没有改变。1988年,候稚明和schimmel的实验证明丙氨酸trna酸分子的氨基酸臂上g3:u70这两个碱基发生突变时则影响到丙氨酰trna合成酶的正确识别,说明g3:u70是丙氨酸trna分子决定其本质的主要因素。trna分子上决定其携带氨基酸的区域叫做副密码子。一种氨基酰trna合成酶可以识别以一组同功trna,这说明它们具有共同特征。例如三种丙氨酸trna(trnaalm/cua,trnaaim/ggc,trnaain/ugc都具有g3:u70副密码子。)但没有充分的证据说明其它氨基酰trna合成酶也识别同功trna组中相同的副密码子。另外副密码子也没有固定的位置,也可能并不止一个碱基对。
(二)多肽链合成的起始
核蛋白体大小亚基,mrna起始trna和起始因子共同参与肽链合成的起始。
1、大肠杆菌细胞翻译起始复合物形成的过程:
(1)核糖体30s小亚基附着于mrna起始信号部位:原核生物中每一个mrna都具有其核糖体结合位点,它是位于aug上游8-13个核苷酸处的一个短片段叫做sd序列。这段序列正好与30s小亚基中的16s rrna3’端一部分序列互补,因此sd序列也叫做核糖体结合序列,这种互补就意味着核糖体能选择mrna上aug的正确位置来起始肽链的合成,该结合反应由起始因子3(if-3)介导,另外if-1促进if-3与小亚基的结合,故先形成if3-30s亚基-mrna三元复合物。
(2)30s前起始复合物的形成:在起始因子2作用下,甲酰蛋氨酰起 始trna与mrna分子中的aug相结合,即密码子与反密码子配对,同时if3从三元复合物中脱落,形成30s前起始复合物,即if2-3s亚基-mrna-fmet-trnafmet复合物,此步需要gtp和mg2 参与。
(3)70s起始复合物的形成:50s亚基上述的30s前起始复合物结合,同时if2脱落,形成70s起始复合物,即30s亚基-mrna-50s亚基-mrna-fmet-trnafmet复合物。此时fmet-trnafmet占据着50s亚基的肽酰位。而a位则空着有待于对应mrna中第二个密码的相应氨基酰trna进入,从而进入延长阶段,2、真核细胞蛋白质合成的起始
真核细胞蛋白质合成起始复合物的形成中需要更多的起始因子参与,因此起始过程也更复杂。
(1)需要特异的起始trna即,-trnafmet,并且不需要n端甲酰化。已发现的真核起始因子有近10种(eukaryote initiation factor,eif)
(2)起始复合物形成在mrna5’端aug上游的帽子结构,(除某些病毒mrna外)
(3)atp水解为adp供给mrna结合所需要的能量。真核细胞起始复合物的形成过程是:翻译起始也是由eif-3结合在40s小亚基上而促进80s核糖体解离出60s大亚基开始,同时eif-2在辅eif-2作用下,与met-trnafmet及gtp结合,再通过eif-3及eif-4c的作用,先结合到40s小亚基,然后再与mrna结合。
mrna结合到40s小亚基时,除了eif-3参加外,还需要eif-1、eif-4a及eif-4b并由atp小解为adp及pi来供能,通过帽结合因子与mrna的帽结合而转移到小亚基上。但是在mrna5’端并未发现能与小亚基18srna配对的s-d序列。目前认为通过帽结合后,mrna在小亚基上向下游移动而进行扫描,可使mrna上的起始密码aug在met-trnafmet的反密码位置固定下来,进行翻译起始。
通过eif-5的作用,可使结合met-trnafmet·gtp及mrnar40s小亚基与60s大亚基结合,形成80s复合物。eif-5具有gtp酶活性,催化gtp水解为gdp及pi,并有利于其它起始因子从40s小亚基表面脱落,从而有利于40s与60s两个亚基结合起来,最后经eif-4d激活而成为具有活性的80smet-trnafmet· mrna起始复合物。
(三)多肽链的延长
在多肽链上每增加一个氨基酸都需要经过进位,转肽和移位三个步骤。
(1)为密码子所特定的氨基酸trna结合到核蛋白体的a位,称为进位。氨基酰trna在进位前需要有三种延长因子的作用,即,热不稳定的ef(unstable temperature,ef)ef-tu,热稳定的ef(stable temperature ef,ef-ts)以及依赖gtp的转位因子。ef-tu首先与gtp结合,然后再与氨基酰trna结合成三元复合物,这样的三元复合物才能进入a位。此时gtp水解成gdp,ef-tu和gdp与结合在a位上的氨基酰trna分离
肽键的形成
①核蛋白体“给位”上携甲酰蛋氨酰 基(或肽酰)的trna
②核蛋白体“受体”上新进入的氨基酰trna;
③失去甲酰蛋氨酰基(或肽酰)后,即将从核蛋白体脱落的trna;
④接受甲酰蛋氨酰基(或肽酰)后已增长一个氨基酸残基的肽键
(2)转肽--肽键的形成(peptide bond formation)
在70s起始复合物形成过程中,核糖核蛋白体的p位上已结合了起始型甲酰蛋氨酸trna,当进位后,p位和a位上各结合了一个氨基酰trna,两个氨基酸之间在核糖体转肽酶作用下,p位上的氨基酸提供α-cooh基,与a位上的氨基酸的α-nh2形成肽键,从而使p位上的氨基酸连接到a位氨基酸的氨基上,这就是转肽。转肽后,在a位上形成了一个二肽酰trna(图18-13)。
(3)移位(translocation)
转肽作用发生后,氨基酸都位于a位,p位上无负荷氨基酸的trna就此脱落,核蛋白体沿着mrna向3’端方向移动一组密码子,使得原来结合二肽酰trna的a位转变成了p位,而a位空出,可以接受下一个新的氨基酰trna进入,移位过程需要ef-2,gtp和mg2 的参加(图18-14)。
以后,肽链上每增加一个氨基酸残基,即重复上述进位,转肽,移位的步骤,直至所需的长度,实验证明mrna上的信息阅读是从5’端向3’端进行,而肽链的延伸是从氮基端到羧基端。所以多肽链合成的方向是n端到c端
(四)翻译的终止及多肽链的释放
无论原核生物还是真核生物都有三种终止密码子uag,uaa和uga。没有一个trna能够与终止密码子作用,而是靠特殊的蛋白质因子促成终止作用。这类蛋白质因子叫做释放因子,原核生物有三种释放因子:rf1,rf2t rf3。rf1识别uaa和uag,rf2识别uaa和uga。rf3的作用还不明确。真核生物中只有一种释放因子erf,它可以识别三种终止密码子。
不管原核生物还是真核生物,释放因子都作用于a位点,使转肽酶活性变为水介酶活性,将肽链从结合在核糖体上的trna的cca末凋上水介下来,然后mrna与核糖体分离,最后一个trna脱落,核糖体在if-3作用下,解离出大、小亚基。解离后的大小亚基又重新参加新的肽链的合成,循环往复,所以多肽链在核糖体上的合成过程又称核糖体循环(ribosome cycle)(图18-16)。
(五)多核糖体循环
上述只是单个核糖体的翻译过程,事实上在细胞内一条mrna链上结合着多个核糖体,甚至可多到几百个。蛋白质开始合成时,第一个核糖体在mrna的起始部位结合,引入第一个蛋氨酸,然后核糖体向mrna的3’端移动一定距离后,第二个核糖体又在mrna的起始部位结合,现向前移动一定的距离后,在起始部位又结合第三个核糖体,依次下去,直至终止。两个核糖体之间有一定的长度间隔,每个核糖体都独立完成一条多肽链的合成,所以这种多核糖体可以在一条mrna链上同时合成多条相同的多肽链,这就大大提高了翻译的效
多聚核糖体的核糖体个数,与模板mrna的长度有关,例如血红蛋白的多肽链mnra编码区有450个核苷酸组成,长约150nm 。上面串连有5-6个核糖核蛋白体形成多核糖体。而肌凝蛋白的重链mrna由5400个核苷酸组成,它由60多个核糖体构成多核糖体完成多肽链的合成
D. 丙氨酸氨基转移酶偏高,IV型胶原高,是什么原因
丙氨酸氨基转移酶就是我们常说的转氨酶,英文缩写是ALT。肝功能检测结果分析中丙氨酸氨基转移酶大多数存在于肝细胞中,其作用就是参与人体新陈代谢,是人体不可或缺的一种蛋白酶。 一、最常见的丙氨酸氨基转移酶偏高的原因就是乙型肝炎和丙型肝炎。由于乙肝病毒和丙肝病毒都会通过不同有途径对肝脏细胞起到杀伤作用。其中乙肝型肝炎较难治疗些,而丙型肝炎较轻易治疗些,凡是在治疗及时,并坚持的丙肝患者没有一个不完全治愈的。 二、饮食问题也是日常生活导致丙氨酸氨基转移酶偏高的原因之一。只要患者食用刺激肝脏的食品,饮酒,以及服用刺激肝脏的药物等都会引起丙氨酸氨基转移酶偏高。所以每碰到一位肝病患者,我都嘱咐他控制好饮食,不要乱用药,做到这些,保肝药不用多吃就能起到保肝护的效果。 另外还有患其他肝脏疾病的人,也会让丙氨酸氨基转移酶偏高。目前最常的就是脂肪肝患者,而且越来越多,这种情况大多都和饮食有一定的关系。像丁肝、甲肝、戊肝就相对少见了。从上面我们就能看出导致丙氨酸氨基转移酶偏高的原因有很多,但不管是哪一种原因引起的,都有可能会让肝病患者的病情发作用。所以对于肝病患者来说,日常保肝护肝与科学的治疗是同样重要的。
E. i型胶原羧基末端肽意义
反映I型胶原的合成情况和骨转换情况。见于儿童发育期、妊娠最后3个月、骨肿瘤,特别是前列腺癌骨转移、畸形性骨炎、酒精性肝炎和肺纤维化等。i型胶原羧基末端肽意义反映I型胶原的合成情况和骨转换情况。血浆I型前胶原羧基端前肽的含量可反映成骨细胞活性和成骨速度,并能反映I型胶原合成速度。
F. 如何测定I型前胶原羧基端前肽
I型前胶原羧基端前肽的正常值:50-200ug/L
测定I型前胶原羧基端前肽的临床意义表现在I型前胶原羧基端前肽增高:见于儿童发育期、妊娠最后3个月、骨肿瘤,特别是前列腺癌骨转移、畸形性骨炎、酒精性肝炎和肺纤维化等。
I型前胶原羧基端前肽降低:见于绝经期后骨质疏松病人经雌激素治疗6个月后可降低30%,但其降低的机制尚不清楚。
(6)l型胶原氨基端延长肽高怎么回事扩展阅读:
I型前胶原羧基端前肽(是骨组织中惟一的胶原,占骨基质的90%以上。血清中I型前胶原羧基端前肽的水平是反映成骨细胞活动和骨形成以及反映I型胶原合成速率的特异指标。它可以被肝脏吸收,通过上皮细胞甘露糖受体结合而被清除,所以易受肝功能的影响。
血清Ⅰ型前胶原羧基端前肽(PICP):是成骨细胞合成胶原时的中间产物,也是反映成骨细胞活动状态的敏感指标。PICP升高可见于畸形性骨炎、骨肿瘤、儿童发育期、妊娠后期,老年性骨质疏松症PICP变化不明显。
G. Ⅰ型胶原羟基端前肽
Ⅰ型胶原是人体最丰富的胶原蛋白形式,是骨组织中唯一的胶原,占骨质的90%,Ⅰ型胶原吡啶交联终肽(ictp)是Ⅰ型胶原的特异性成份,也是目前唯一知道从构成胶原纤维分子中释出的胶联.只来源于破坏的成熟的骨基质,不会在新骨形成过程中从新形成的骨质中产生,以完整的免疫源性肽形式进入血中,不再进一步分解,是新发现的溶骨指标,能直接反映溶骨的范围,且不受摄入食物的影响.大部分骨代谢指标会有明显变化,在鉴别某些骨骼疾病时会有困难.而ictp受其影响很小,只反映骨骼疾病的变化.ictp在生理性骨代谢中的反应迟缓,它的变化反应骨质病理性破坏.
血清Ⅰ型胶原吡啶交联终肽浓度在反映类风湿关节炎的活动性,Ⅰ型胶原吡啶交联终肽是类风湿关节炎早期诊断,病情监测及疗效观察的可靠辅助诊断指标.而且Ⅰ型胶原吡啶交联终肽还常出现在恶性肿瘤发生骨转移后.
如果ictp升高,建议到医院详细检查身体状况,着重检查有无类风湿关节炎和有无恶性肿瘤伴骨转移. .....
H. 27个月大孩子的血气分析,求解。血尿遗传代谢筛查和染色体检查还没出来。
为什么要做这个检查呢??无缘无故不会去做血尿串联质谱的呀……做一次要六百多啊。以后分析化验单的时候,一定要简单介绍一下病情。医生不能只看化验单不看人呐!
从血气分析上面是看不出什么结果的。因为宝宝哭闹很严重,数据没有参考价值。
而且上面的氧分压太高了,估计抽的时候里面混了空气。
仅仅从这个数据看,是有酸中毒的。结合PH值,还有碱剩余BE超出6了。可以认为是轻度的酸中毒,不过没有意义的。
I. 肝纤维化指标中3型前胶原氨基端肽偏高什么意思
一般是有肝脏代谢受伤导致的,还是需要配合医院的治疗,积极的使用保肝的药物。
J. 谷氨酰氨基转肽酶偏高是怎么回事
一般来说,谷氨酰转肽酶偏高[1]的原因有以下几衡滚个方面:
1、当患急性病毒性肝炎时,坏死区邻近的肝细胞仙酶合成亢进,从而引起血清谷氨酰转肽酶升高。这个因素也是最常见的,也是最不容忽视的。
2、慢性活动性肝炎时谷氨酰转肽酶常常高于正常1-2倍,如果长期升高,可能有肝坏死倾向。
3、肝内或肝外胆管梗阻时,由于谷氨酰转肽酶排泄受阻搜侍,随胆汁返流入血,也会出现谷氨酰转肽酶偏高。
4、酒精性肝炎和酒精性肝硬化患者谷氨酰转肽酶几乎都上升,成为酒精性肝病的重要特征。
5、原发性或转移性肝癌病人中,谷氨酰转肽酶多数呈中度或高度增加,可大于正常的几倍甚至几十倍。咐漏余
6、原发性或继发性胆汁性肝硬化早期,也会出现谷氨酰转肽酶升高现象。
7、脂肪肝病人也会出现谷氨酰转肽酶升高,但一般营养性脂肪肝时,血清谷氨酰转肽酶活性多数不超过正常值的2倍[2]。