‘壹’ 重组III型人源化胶原蛋白该如何使用
通过直接涂抹或者仪器导入都可以便捷使用的。由于锦波重组III型人源化胶原蛋白是100%人源化的,氨基酸序列与人体自身的胶原蛋白氨基酸序列特定功能区100%一致,完全没有过去的胶原蛋白活性低且会导致排异反应的情况,因此使用起来特别方便,而且可以其高渗透高吸收性可以快速与机体结合发挥作用。
‘贰’ 人源化III型胶原蛋白如何使用最有效
导入和涂抹是最有用的功效,但是在早期的时候,由于从动物组织中提取的胶原蛋白一般都是含有一定的细胞毒性,因此容易造成过敏或者是其他反应出现。而现在锦波生物最新研发的人源化III型胶原蛋白则就可以安全的使用导入或者涂抹了,因为人源化III型胶原蛋白是0过敏0排异的功能蛋白,而且由于是经过基因表达生产出来了,避免了传统动物源胶原蛋白需要经过酸碱提取的这一道工序,因此即便是PDB的检测当中,人源化III型胶原蛋白也被认定为0细胞毒性的。
‘叁’ 胶原蛋白的提取分离
由于胶原是细胞外间质成分,在体内以不溶性大分子结构存在,并与蛋白多糖、糖蛋白等结合在一起,因此胶原的制备包括材料的选择、预处理、酸碱酶盐水法提取、不同类型胶原的分离和纯化。 除胶原蛋白外,动物骨中还含有油脂、多种矿物质和其他杂质,因此在被用于提取胶原蛋白之前必须进行预处理。先剔除动物骨上残留的肉质和肌腱等杂物,粉碎后用正丁醇或正己烷萃取出骨油。最后除去骨中无机物以提高胶原蛋白的得率。除去骨中的矿物质可用稀酸或EDTA溶液。有人用原料用5倍质量的1.0moL/LHCL脱钙处理2d,用正乙烷脱脂后再用胃蛋白酶酶解,在加酶量150U/g,pH值1.7,37℃条件下处理120min,然后在固液比1∶6的情况下抽提5h,在此条件下,提取率可达18%;还有人用EDTA溶液(pH7.4)浸泡骨料5d,可有效脱去骨料中的羟基磷灰石。
胶原蛋白的提取一般有三种方法:一是高压辅助的物理方法;二是用溶剂预处理结合低温或热水抽提的化学方法,根据溶剂的不同,可分为热水浸提法、酸法、碱法、盐法;三是用酶的生物化学法。一般来说,高压辅助和热水抽提针对明胶的提取,而低温抽提和酶法针对胶原的提取,但其基本原理都是根据胶原蛋白的特性改变蛋白质所在的外界环境,把胶原蛋白从其他蛋白质中分离出来。
在实际提取过程中,不同提取方法之间往往相互结合,可以得到较好的提取效果。采用超高压处理系统对原料给予高压处理一段时间,使其组织结构和胶原蛋白的三股螺旋结构发生松弛、变性,便于分离提取。 酸法提取是利用一定浓度的酸溶液在一定的条件下提取胶原蛋白,主要采用低离子浓度酸性条件破坏分子间盐键和希夫碱,而引起纤维膨胀、溶解,采用酸法提取的胶原蛋白通常成为酸溶性胶原蛋白。酸溶解法可将没有交联的胶原分子溶解出来,也可溶解含有醛胺类交联键的胶原纤维,然后释放到溶剂中。酸法是提取胶原蛋白比较常用和有效的方法,用低温酸法提取的胶原最大程度的保持了其三螺旋结构,适用于医用生物材料及原料的制备。通常的做法是将适当浓度的酸液按一定料液比加入到经过预处理的骨粉中,于0~25℃搅拌提取一定时间。在采用酸法进行胶原蛋白的提取时,注意提取温度不宜过高,以免胶原蛋白的生物活性发生破坏。取样经前处理后,匀浆在低温下用酸浸提,离心即可得酸溶性胶原蛋白(acid-soluble collagen,ASC)。作为溶剂使用的酸,主要有盐酸、磷酸、甲酸、乙酸、苹果酸、柠檬酸等,但大多数研究集中于乙酸抽提,像Maria Sadowska等用0.5mol/L柠檬酸在室温下提取骨胶原蛋白,其提取率略低于乙酸提取。柠檬酸因不产生颜色和异味得以广泛使用于食品工业的胶原蛋白的提取。
酸法处理时,反应强烈,水解彻底,多生成氨基酸混合物,而且使用酸提取时,根据酸浓度、水解温度、水解时间等条件的不同,可以得到分子量不均的胶原水解物。但是在即使中等浓度酸彻底水解过程中色氨酸也会全部被破坏,丝氨酸和酪氨酸也会部分被破坏,且设备腐蚀严重。因此,酸法溶出生物医用胶原要准确控制酸度、温度、时间等影响因素。由于各种不足,酸法很少单独使用,一般和酶法配合。比如以猪皮为原料,在柠檬酸(pH8.6)和胃蛋白酶协同下提取胶原蛋白。在处理后的猪皮中加0.05moL/L含有胃蛋白酶的柠檬酸溶液(pH2.5-3)处理一段时间,然后再用NaCL盐析,最后提取率为12.35%,提取物保持了完整三股螺旋结构的I型胶原蛋白。还有人以雏鸡胸软骨为原材料,在0.5moL/L醋酸条件下经胃蛋白酶多次消化,在4℃,20000r条件下离心20min,最后应用DEAE-Sephadex A-50进行离子交换层析,之后透析,再用NaCL盐析,最后得到纯化的胶原蛋白Ⅱ型。 碱法提取即利用一定浓度的碱在一定的外界条件下提取胶原蛋白,碱处理法中常用的处理剂为石灰、氢氧化钠、碳酸钠等,用氢氧化钠浸提时效果较好。一般的是把样品匀浆后,用碱溶液多次溶胀后,再离心提取。但由于易引起蛋白质变性,如胶原肽键水解,含羟基、疏基的氨基酸全部被破坏;所得产物等电点pH值较低,天冬酞胺和谷氨酞胺分别转变为天冬氨酸和谷氨酸,得到的水解产物分子量较在酸性溶液中比低等问题,若比较严重的话,还会产生 D、L-型氨基酸消旋混合物,若D型氨基酸含量高过L 型氨基酸,则会抑制L-型氨基酸的吸收,有些D型氨基酸有毒,甚至有致癌、致畸和致突变的作用。而且碱法提取的含量较低,用氢氧化钠从鱿鱼皮中提取碱溶性胶原蛋白,其得率只有3%(以湿基计)。所以,若想提取结构完整、使用安全的胶原蛋白,很少采用此方法。有关单独采用碱法提取胶原蛋白的报道不多,一般是碱法提取和酸法提法结合使用。比如在4℃条件下,鱼骨用0.1moL/L的NaOH浸泡6h,再用2.5%NaCl浸泡6h去除杂蛋白,用10%的异丙醇溶液去除脂肪,0.1moL/L的柠檬酸浸泡3d,最后得到无色无味的胶原蛋白,提取率为11.87%。
注意,无论酸法或碱法,均可有效地提取胶原蛋白,有人分别采用醋酸- 盐酸的混合酸液(pH3.0)和NaOH溶液(pH12.0)提取骨胶原蛋白,提取率基本相当。但是,这两种方法提取胶原蛋白不仅容易影响胶原蛋白的生物活性,而且提取后产生的酸性或碱性废液必须进行适当处理,以避免对环境造成污染。 酶法提取是指可溶性胶原和酸溶性胶原被提取后,需用一些蛋白酶,如胶原酶、胃蛋白酶、木瓜蛋白酶和胰凝乳蛋白酶等水解,得到不同的酶促溶性胶原蛋白。所使用的蛋白酶主要分3种:动物蛋白酶(如胰蛋白酶,胃蛋白酶),植物蛋白酶(如木瓜蛋白酶,菠萝蛋白酶),微生物蛋白酶(如碱性蛋白酶,中性蛋白酶)。在对酶法水解胶原蛋白的研究中,以碱性蛋白酶应用最多。
将胶原进行限制性降解,即将末端肽切割下来,由于胶原肽链间的共价键都是通过分子末端肽里的赖氨酸或羟赖氨酸的相互作用形成的,末端肽被切下后,含三螺旋结构的主体部分可溶于稀有机酸而被提取出来。用酶处理,可以水解掉胶原纤维蛋白的末端肽,提高胶原蛋白的产率;而且还不会破坏胶原蛋白的三股螺旋结构,保持其特性。影响酶提取的因素有很多,如酶浓度、酶与底物的比例、酶解时间、酶解温度、pH值以及料液比等。在实际操作中,大多数采用酶复合法提取胶原蛋白,较多的是使用胃蛋白酶提取,有机酸多为乙酸。
酶解胶原蛋白的工艺主要分为单酶水解法和多酶水解法。多酶水解法又分为混合酶水解法(比如牛胰蛋白酶,链霉菌蛋白酶,芽孢杆菌蛋白酶混合)和分步酶水解法,酶法提取皮胶原具体实验工艺及条件的选取通常应考虑要开发的产品对分子量的要求,要得到分子量较小的胶原多肽一般采用多酶水解法。影响酶解效果的因素主要有:酶的种类、加酶量、酶解温度、酶解时间、pH值及料水比。采用酶法提取骨料中的胶原蛋白,既能有效缩短提取时间,又能获得具有良好生物活性的胶原蛋白,而且对环境的污染也较小。胶原蛋白不易被普通蛋白酶水解,但能被动物胶原酶断裂,断裂的碎片自动变性后可被普通蛋白酶水解。胃蛋白酶水解胶原蛋白的适宜条件为pH 1.65~1.70、温度37℃。
有人以猪骨为原料,用蛋白酶的酶解反应代替传统制胶工艺,对骨胶原的酶解反应与酶法制胶工艺进行了试验研究。结果表明:以胃蛋白酶对骨胶原的提取率最高(46.14%),其次是胰蛋白酶(43.42%),接下来是中性蛋白酶(30.14%),最后是碱性蛋白酶(21.15%)。并且通过单因素和正交试验对胃蛋白酶酶解反应中各主要影响因素进行了优化。试验结果表明,胃蛋白酶提取的最优条件是,胃蛋白酶的浓度是1%,在pH2.0的条件下酶解48h,然后在浓度为10%(w/v)的NaCL溶液中盐析24h,最后骨胶原的回收率为64.77%,骨胶原的提取率为49.75%。还有人用胃蛋白酶提取猪皮胶原蛋白,分别在水解0、2、6、10、14、18、22、26h时对四种不同胃蛋白酶用量(分别为1%、2%、2.5%、3%)的试样取样检测,采用一阶HILL方程模拟胃蛋白酶提取猪皮胶原蛋白的进程以及胃蛋白酶水解速率的衰减过程,最后得出2%的胃蛋白酶用量和6-7h的水解时间提取率最大。还有人用以新鲜猪皮为原料,在50-52℃的条件下用胰酶进行水解,在酶用量为 5000:1~10000:1,pH值为9,反应2-3h,原料:水为1:2的条件下酶解。结果表明:总蛋白质的提取率≥80%。
采用酶法提取胶原蛋白时,必须严格控制提取条件。首先,酶作用时间必须适当。如果时间过短,胶原蛋白就不能充分释放到提取液中,影响提取率;如果酶作用时间过长,胶原蛋白会水解过度,产生过多的苦味小分子低聚肽,不仅会增加分离纯化的难度,也会影响胶原蛋白的功能特性和生物活性。其次,酶解温度要适宜。温度过低,酶的作用效果不明显;温度过高会引起酶的失活和胶原蛋白的变性。据报道,当介质pH略低于中性时,胶原蛋白的变性温度为40~41℃,当介质pH为酸性时,胶原蛋白的变性温度为38~39℃,而且鱼皮胶原蛋白的变性温度要比猪皮胶原蛋白的变性温度低7~12℃。所以,如果要使提取的胶原蛋白具有良好的生物活性,在提取过程中应使提取温度低于变性温度。第三,需选用适当的酶。一般从陆生哺乳动物组织中提取胶原蛋白时,采用胃蛋白酶在其最适作用温度下进行提取是合理的,但对于鱼类等水生动物,由于其胶原蛋白的变性温度比陆生哺乳动物低,因此许多蛋白酶便不适用,如果在这些酶的最适作用温度下提取可能会破坏胶原蛋白的某些功能特性和生物活性。采用酶法提取胶原蛋白及其多肽的研究主要是从动物皮及其加工副产物中,应用酶法从动物骨中提取胶原蛋白及其多肽报道较少。 指使胶原分子内部和分子间通过共价健结合提高胶原纤维的张力和稳定性的方法。该法又分为物理方法、化学方法和低温等离子体法,生物学方法;其中物理方法、化学方法是最常用的交联改性方法,生物学方法改性胶原蛋白主要在研究有关动物老化的生命现象中涉及,在研制胶原基生物医学材料中少见报道。
物理方法
通过物理手段对胶原蛋白改性有紫外线照射、重度脱水、λ射线照射和热交联等方法。胶原溶液如被紫外线等照射,将在分子间产生交联,粘度增加,生成凝胶。常用的紫外线交联胶原膜的方法是将胶原膜放在铝箔上,距离254 nm紫外灯20 cm高度,照射1~5 h。对紫外线照射的胶原膜进行力学性能和胶原酶试验表明:交联胶原膜的萎缩温度Ts和抗胶原酶解的能力均显着高于未交联胶原膜。
重度脱水也是胶原蛋白物理改性中常使用的方法,该法是通过脱水导致胶原分子间交联,从而增加变性温度,改善胶原的性能。改性后胶原膜生物相容性提高,降低了水溶性,影响了膜与成骨细胞的生物相容性。物理方法改性原蛋白的优点是可避免外源性有毒化学物质进入胶原内,缺点是胶原膜交联度低,且难以获得均匀一致的交联。
化学方法
化学方法比物理方法改性交联度高,且能获得均匀一致的交联,对调节、控制胶原的各性质均有效。已广泛应用于各种化学试剂交联胶原,以提高其交联度、力学性能及生物相容性。化学改性法具体又可分为使用化学试剂交联、侧链的修饰、生理活性物的固定化三种方法。
化学试剂交联法中常用的化学交联剂有戊二醛、己异二氰酸酯、碳化二亚胺、叠氮二苯基磷等,其中戊二醛是应用最广泛的试剂,大量实验证明:戊二醛能提供有效交联,但有细胞毒性,且其用量难以控制。另外,随着交联度的增加,吸水能力和膨胀度却会降低。酰基叠氮化物、聚环氧化物或京尼平交联等,不会引入明显的毒性,且可获得理想的交联效果。所见报道中,多使用单一交联剂对胶原蛋白交联改性,但也有使用混合交联剂的,如为了解决人工心脏瓣膜晚期钙化问题,筛选出环氧丙烷化学改性戊二醛处理生物瓣的方法,可明显减低瓣膜组织胶原蛋白末端游离羧基含量。动物实验表明,经改性后的瓣膜组织能保持较好的组织稳定性和机械抗张强度、免疫原性测试为阴性,符合临床应用。
侧链修饰就是对胶原分子侧链的氨基和羧基进行化学修饰,改善电荷分布,使胶原获得新的特性,例如将胶原氨基丁二酰化,可变成负电荷丰富的胶原。与未修饰胶原蛋白相比血小板粘附能,血纤维蛋白形成能都弱,有抗栓性;然而如将胶原羧基甲基化获得的正电荷丰富的胶原,生理条件下血小板粘附能、活化能都高。与交联改性相比,在生物材料领域,利用侧链修饰对胶原改性所做的工作还较少。
化学方法虽然可获得均匀一致的交联,但存在着引入外源有毒试剂,残留试剂难清除等缺点。一些报道表明,低温等离子体技术改性胶原或胶原复合膜可使材料表面引入不同基团,改变材料表面化学组分和结构,从而改变材料的特性,如使之更具有细胞识别位,提高表面能,改善表面极性等。 胶原单独使用,物理机械性能差(这几乎是天然材料共有的弱点),性能单一,且因有亲水性强,在体内易被胶原酶降解等不可避免的弱点限制了它的应用。但如将胶原与其它物理、化学性质不同的合成或天然高分子共混,组成一种多相固体材料,在性能上胶原与其它高分子互相补充,胶原基“复合材料”的概念由此产生。
已见报道的与胶原共混的合成高分子有不可生物降解的聚甲基烯酸酯及丁烯酸酯、聚氨酯、聚酰胺和可生物降解的聚乙烯醇、聚乳酸、聚谷氨酸、聚乙醇酸等,20世纪80~90年代初最有代表性的是聚甲基丙烯酸羟乙酯(PHEMA)和聚乙烯醇与胶原共混,其报道集中于复合方法、复合机理、理化及生物学性能、材料表面和整体结构、表面修饰的方法和机理以及水凝胶的溶胀扩散等,尤其是水凝胶制备、作软组织替代、药物缓释等。后来利用可生物降解的聚乳酸、聚乙醇酸、聚酸酐、聚谷氨酸、聚亚乙基四乙酸等与胶原共混改性制备可吸收外科缝线、组织工程支架材料(如组织引导再生材料)的相关研究相对增多。不过合成高分子与胶原蛋白共混复合一些问题,如尼龙等不降解高分子材料不能进行生理代谢,与胶原蛋白复合后只能用做皮肤的外层敷料不能永久代替皮肤,而聚谷氨酸等可生物降解材料,如果相对分子质量小则强度不够,相对分子质量大难溶于水,溶解时还出现降解,影响材料的机械强度。
天然高分子材料中最具代表性的是天然蛋白质和天然多糖,多糖主要有软骨素、HA(透明质酸)、壳聚糖、肝素等,多糖复合材料比较集中于可吸收性外科缝线、药物释放的载体、皮肤替代物、透析膜、止血剂、医用引导组织再生材料、骨替代材料、组织培养系统的支架。
‘肆’ 胶原蛋白粉溶解不好怎么回事
原因太多、分子大、不是深海的、不纯…不过有一点是肯定的,便宜!
你用胶原蛋白前要了解,胶原也有给动物饲料添加的也有小作坊磨的也有骨皮熬的也有鱼鳞提出的,最好的是深海鳕鱼的,三两句说不完,你还是有空查查修复型胶原蛋白,看看学习一下,别再乱吃了
‘伍’ 胶原蛋白1-3型和2型有何区别
一、存在位置不同
1、胶原蛋白1型:主要存在于成人皮肤、肌腱、骨组织。
2、胶原蛋白2型:主要存在于婴儿皮肤或血管内膜、肠道。
3、胶原蛋白3型:主要存在软骨、玻璃体、椎间盘等。
二、特点不同
1、胶原蛋白1型:I型胶原蛋白是相对坚硬的胶原蛋白,并呈现有鱼种的特异性。
2、胶原蛋白2型:II型胶原蛋白独特的高分子长链纤维结构使它在体内能形成胶原蛋白网络,并吸附各种蛋白多糖聚合物最终为组织提供抗拉张强度。
3、胶原蛋白3型:III型胶原不成熟、不稳定,弹性张力较低;III型胶原蛋白是具有弹性的胶原蛋白。
三、作用不同
1、胶原蛋白1型:胶原蛋白Ⅰ型较粗大,用于支撑皮肤硬度,使皮肤坚固。但是如果含量过多,则会使皮肤僵硬,创伤愈合后,也容易形成疤痕。
2、胶原蛋白2型:与皮肤损伤修复过程和修复质量紧密相关。
3、胶原蛋白3型:胶原蛋白III型较细小,用于支撑皮肤柔嫩度,使皮肤细腻和富有弹性。含量越高,越能使皮肤细腻柔嫩,创伤后III型胶原蛋白可以更好地让伤口恢复,不容易留疤痕。
‘陆’ 胶原蛋白的理化性质
一般是白色、透明的粉状物,分子呈细长的棒状,相对分子质量从约2kD至300kD不等。胶原蛋白具有很强的延伸力,不溶于冷水、稀酸、稀碱溶液,具有良好的保水性和乳化性。胶原蛋白不易被一般的蛋白酶水解,但能被动物胶原酶断裂,断裂的碎片自动变性,可被普通蛋白酶水解。当环境pH低于中性时,胶原的变性温度为40~41℃,当环境pH为酸性时,胶原的变性温度为38~39℃。
胶原蛋白红外光谱图册参考资料。
胶原蛋白是一种两性电解质,这取决于两个因素,其一,胶原每个肽链具有许多酸性或碱性的侧基;其二,每个肽链的两端有α-羧基和α-氨基,都具有接受或给予质子的能力,它们可在特定的pH值范围内,解离产生正电荷或负电荷,换句话说,随着介质的pH值,不同胶原即成为带有许多正电荷或负电荷的离子。胶原肽链侧基的pKa值与其组成氨基酸侧基的pKa值略有不同,这是由于在蛋白质分子中受到邻近电荷的影响所造成的。等电点是7.5~7.8,呈现出偏碱性,因为胶原的肽链中碱性氨基酸比酸性氨基酸多一点。由于是高分子,在水溶液中具有胶体性质和一定粘度,粘度在等电点时最低,而且温度越低,粘度越大。
不同分子量分布胶原蛋白溶液的黏度与溶质浓度、溶剂、pH、温度和外加电解质有关。在等电点时胶原蛋白溶液的黏度最低,pH值低于或高于等电点时,胶原蛋白及多肽均将带一定电荷,溶液的黏度相应增大,离等电点越远,溶液的黏度越大;不同分子量分布胶原蛋白及多肽溶液的黏度均随温度升高而下降。胶原蛋白分子量越大,浓度越大,溶液的黏度越高,高分子量胶原蛋白溶液的黏度随浓度增加呈指数上升,而低分子量胶原蛋白溶液的黏度则随浓度增加近似直线上升;在胶原蛋白及多肽溶液中加入电解质会导致其黏度明显上升。
胶原蛋白的水解产物含有多种氨基酸,其中以甘氨酸最为丰富。其次为丙氨酸、谷氨酸和精氨酸,半胱氨酸、色氨酸、酪氨酸以及蛋氨酸等必需氨基酸含量低,因此,胶原蛋白属不完全蛋白质。水解猪皮胶原所得的肽类产物中含有19种氨基酸,其中包括7种成人必需氨基酸和2种幼儿必需的半必需氨基酸;而且氨基酸总量高达90%以上。在八种人体必需氨基酸中含有六种:异亮氨酸(Ile)为1.21%,亮氨酸(Leu)和苯丙氨酸(Phe)为4.89%,缬氨酸(Val)2.95%,苏氨酸(Thr)为1.95%,赖氨酸(Lys)为1.94%。
胶原的相对分子质量大,电泳图有3条泳带,在100kD附近出现的2条泳带分别是胶原分子的α1链和α2链,在200 kD附近出现的1条泳带是胶原分子的β链。即胶原的每条多肽链相对分子质量可达100kD,1个胶原分子相对分子质量为300kD。多肽分子量的测定方法常用SDS-PAGE,凝胶色谱法以及质谱法。有人采用凝胶过滤色谱法测定脱铬革屑中胶原水解产物分子量分布在16.1KD左右。飞行时间质谱法测定比目鱼皮胶原寡肽分子量的分布主要集中在0.6~1.8kD。动物蛋白酶水解后的胶原多肽的分子量在2~7kD,比植物蛋白酶水解的胶原多肽分子量范围更广。
胶原的热稳定性是指测定其在水系中纤维的热收缩温度(Ts),或溶液中分子的热变性温度(Td)。Ts和Td之差一般在20~25℃,而 Ts值较Td值容易测定。Td还可以表示胶原螺旋被破坏的温度,另外还与其亚氨基酸(脯氨酸和羟脯氨酸)的含量有关,尤其是羟脯氨酸含量,它们之间存在正相关,冷水性鱼类的羟脯氨酸含量最低,所以冷水性鱼类胶原蛋白Td值明显低于暖水性鱼类,而又都低于陆生动物。但鱼皮胶原蛋白与鱼肉胶原蛋白相比,其真皮的Td要比肌肉的低1℃左右,这与肌肉胶原中脯氨酸的羟基化率较真皮胶原高有关。有人测定了多种鱼皮可溶性胶原蛋白的氨基酸组成,并与牛皮的氨基酸组成进行了比较,发现鱼皮胶原蛋白的羟脯氨酸和脯氨酸等亚氨酸含量比牛皮的低。此外,鱼皮明胶与牛皮明胶相比,其固有的粘度、热变性温度均比较低。
胶原蛋白的热变性温度可以通过测定胶原蛋白溶液增比黏度的变化来确定。其方法是将胶原蛋白样品溶于一定量的缓冲溶液中,并配制成一定浓度的溶液,然后用乌式黏度计测量溶液在一定温度区间内保持一定时间后的增比黏度,以增比黏度对温度作图,当增比黏度变化50%时所对应的温度即为热变性温度。热变性温度还可通过拉曼光谱和差示扫描量热法等进行测定。有人测得鲈鱼、鲫鱼和鳙鱼鱼皮胶原蛋白的热变性温度分别为 25、27和30℃,它们的栖息水温分别为 26~27、29 和32℃,亚氨基酸含量分别为17.2%、18.1%和 18.6%,与 3 种鱼皮胶原的热变性温度相吻合Ⅱ型胶原和Ⅺ型胶原Ⅱ型胶原由三条α1肽链组成,即[α1(Ⅱ) ]3,富含羟赖氨酸,并且糖化率高,含糖量可达 4%,是软骨中的主要胶原。另外,即使同一生物,皮和骨胶原蛋白的热变形温度也可能不一,像来自日本海鲈、鲐鱼、大头鲨和眼斑鲀的皮胶原蛋白的变性温度为25.0~26.5℃,而骨胶原蛋白的变性温度则为29.5~30.0℃。附带结论是骨胶原蛋白的变性温度范围整体上比皮胶原蛋白的变性温度范围要高。而且骨胶原蛋白和皮胶原蛋白在不同pH时的溶解度不同。这表明皮和骨胶原蛋白的分子特性和构型存在差异。
作为生物高分子,胶原的强度不大,有研究表明胶原蛋白的凝胶强度与其浓度的平方几乎成正比关系,强度测定可用凝胶强度计。
特别提示:明胶、胶原蛋白和水解胶原蛋白并不相同。明胶是胶原在高温作用下的变性产物,其组成复杂,相对分子质量分布宽,由于高温造成胶原蛋白变性,胶原分子的3股螺旋结构被破坏,但可能有部分α链的螺旋链还存在,因此一定浓度的明胶溶液能成凝胶状。在食品工业、摄影和制药业中被广泛应用。据报道,全世界每年生产的明胶产品中,有65%用于食品工业,20%用于照相工业,10%用于制药工业。水解胶原蛋白是在较高温度下用蛋白酶水解胶原或明胶得到的,受温度和酶的双重作用,使水解胶原蛋白的相对分子质量比明胶更小,由于在较高温度条件下,蛋白酶对胶原肽键的水解是随机的,使水解得到的蛋白液组成也很复杂,是相对分子质量从几千到几万的蛋白多肽的混合物。由于分子量小,水解胶原蛋白容易降解,所以在营养保健品和日用化学品开发方面拥有一定的市场。水解胶原蛋白可用于生物发酵培养基,也可以作为一种高蛋白饲料营养添加剂替代进口鱼粉用于混、配合饲料生产。胶原、明胶和水解胶原蛋白这3种物质虽具有同源性,但在结构和性能上却有很大的区别。胶原保留特有的天然螺旋结构,在某些方面表现出明显优于明胶和水解胶原蛋白的性能,如胶原止血海绵止血性能优于明胶海绵,作为澄清剂用的鱼胶原如果变性则沉降能力明显降低。然而,人们对这3种物质的认识常常产生混淆,认为它们具有相同性质,甚至认为它们是同一种物质。
水解胶原蛋白和胶原多肽也并不相同,可以近似认为是宏观和微观的关系。胶原蛋白分子经水解后主要形成相对分子量较小的胶原多肽,由于胶原蛋白独特的三股超螺旋结构,性质十分稳定,一般的加工温度及短时间加热都不能使其分解,从而造成其消化吸收较困难,不易被人体充分利用。水解后其吸收利用率可以提高很多,且可以促进食品中的其它蛋白质的吸收。胶原多肽除了肽链的两端含有未缩合的末端羧基和氨基外,在侧链上还含有Lys的ε-NH2以及Asp和Glu的-COOH。胶原多肽可完全溶解于水(冷水亦可溶解),水溶液低粘度,在60%的高浓度下也有流动性,耐酸碱性能好,在酸、碱存在的情况下均无沉淀;耐高温性能好,200℃加热亦无沉淀,同时它还具有良好的吸油性、起泡性和吸水性等。 一级结构是蛋白质分子中氨基酸以肽键连接的顺序,每一种蛋白质分子,都有其特定的氨基酸组成和排列方式,由此就决定了不同的空间结构和功能。蛋白质分子中一级结构关键部位氨基酸的改变,会直接影响其功能,这个关键部位就是蛋白质分子的活性中心。已发现并确认了不下30种类型的胶原蛋白。
一般的蛋白质是双螺旋结构,而作为细胞外基质(ECM)的一种结构蛋白,胶原蛋白由三条多肽链构成三股螺旋结构,或称胶原域,即3条多肽链的每条都左旋形成左手螺旋结构,再以氢键相互咬合形成牢固的右手超螺旋结构。胶原特有的左旋a链相互缠绕构成胶原的右手复合螺旋结构,这一区段称为螺旋区段,螺旋区段最大特征是氨基酸呈现(Gly-X-Y)n 周期性排列,其中 x、Y 位置为脯氨酸(PrO)和羟脯氨酸(Hyp),是胶原蛋白的特有氨基酸,约占25%,是各种蛋白质中含量最高的;胶原蛋白中存在的羟基赖氨酸(Hyl)在其它蛋白质中不存在,它不是以现成的形式参与胶原的生物合成,而是从已经合成的胶原的肽链中的脯氨酸(Pro)经羟化酶作用转化来的。而一般陆生哺乳动物蛋白质中羟脯氨酸和焦谷氨酸的含量极微少。与陆生动物相比,水生动物中的胶原蛋白,其脯氨酸和羟脯氨酸的总量少,而含硫元素的蛋氨酸(Met)含量要远大于陆生动物中的胶原蛋白。
一级结构是组成胶原蛋白多肽链的氨基酸序列;胶原蛋白分子是由3条左手螺旋(二级结构)的多肽链组成,它们相互缠绕形成一个在中心分子轴周围的右手螺旋(三级结构);完整的胶原蛋白分子的长度约280 nm,直径约1.5 nm;在Ⅰ型胶原原纤维的二维结构(小角X线衍射图谱和透射电子显微照片)中,胶原分子通过一个或多个4 D距离与另一个胶原分子交错,D表示在小角X线衍射图谱中所见的基本重复距离,或电子显微照片中所见的重复距离。因为胶原分子的长度约是4.4 D,胶原分子的交错引起约有0.4 D的折叠区和约0.6 D的缺损区。
胶原蛋白中甘氨酸(Gly)、丙氨酸(Ala)、脯氨酸(Pro)和谷氨酸(Glu)含量较高,特别是甘氨酸,约占总氨基酸的27%,也有报道说占1/3,即每隔两个其它氨基酸残基(X,Y)即有一个甘氨酸,故其肽链可用(Gly-X-Y)n 来表示。每个原胶原分子由三条α-肽链组成,α-肽链自身为α螺旋结构,肽链中每三个氨基酸残基中就有一个要经过此三股螺旋中央区,而此处空间十分狭窄,只有甘氨酸适合于此位置,由此可解释其氨基酸组成中每隔两个氨基酸残基出现一个甘氨酸的特点。特别注意,X、Y均表示任意的氨基酸,只不过X通常是脯氨酸,Y通常指羟脯氨酸。同时还含有少量3-羟脯氨酸(3-hydroxyproline)和5-羟赖氨酸(5-hydroxylysine,Hyl)。羟脯氨酸残基可通过形成分子内氢键稳定胶原蛋白分子。三条α-肽链借范德化力、氢键及共价交联则以平行、右手螺旋形式缠绕成“草绳状”三股螺旋结构,使胶原具有很高的拉伸强度。
‘柒’ 三型胶原蛋白的作用是什么
三型胶原蛋白的作用是:
发挥其优秀的生物学活性、组织相容性,促使真皮层成纤维母细胞增生,提高细胞活性,并被成纤维细胞作为合成胶原蛋白的原料吸收,刺激细胞更多的合成胶原蛋白、使受损老化的皮肤得到填充和修复,重建网状结构,增强受损皮肤的扩张力,恢复皮肤弹性。使肌肤达到抗衰修复、安肌祛敏、祛疤消印、补水亮肤。
III型胶原蛋白是同三聚体,或由三个相同的肽链(单体)组成的蛋白质,每个肽链称为III型胶原蛋白的α1链。单体在形式上被称为III型胶原、α-1链,在人类中是由COL3A1基因编码的。III型胶原蛋白是原纤维胶原蛋白之一,其蛋白质具有长得,不可弯曲的三螺旋结构域。
(7)三型胶原蛋白怎么溶解扩展阅读:
胶原蛋白的分布
胶原是胞外基质中最主要的水不溶性纤维蛋白。I、II、III型胶原含量最为丰富,能形成类似的纤维结构。I 型胶原常形成较粗的纤维束,分布广泛,主要存在于皮肤、肌腱、韧带及骨中,具有很强的抗张强度,约占人体胶原含量的90%;
II型胶原主要存在于软骨中;III型胶原形成细微的原纤维网,广泛分布于具有伸展性的组织中,如皮肤、血管及内脏等疏松结缔组织;IV型胶原形成二维网格样结构,是基膜的主要成分及支架。
‘捌’ 如何正确的选择胶原蛋白
不同类型的胶原蛋白有不同的作用,目前科学已发现多种,其中以第1型和第2型胶原蛋白为人体占比最多的胶原蛋白类型。
第1型胶原蛋白主要作用为美容养颜,大部分存在于皮肤、血管、肌腱等部位。
第2型胶原蛋白主要作用为缓解关节疼痛,大部分存在于软骨组织。
这种一般是经过水解技术加工的胶原蛋白;它们可以帮助身体减轻消化负担,更直接快速地吸收营养。
不同来源的胶原蛋白,对吸收率不一样。目前以深海鱼皮 > 淡水鱼皮 > 鱼软骨或鱼鳞 >牛或猪的软骨、骨骼及皮肤组织中萃取出的胶原蛋白为顺序排列,最好的是深海鱼皮,纯净无污染,并且鱼皮中胶原蛋白的氨基酸占比与人体十分相似,具有更好的吸收率。
衰老是多因素的综合结果,所以,配合一些促进胶原蛋白合成的营养素会有更好的表现。
公认比较好的是“维生素C”或“鱼子酱提取物”,它们对胶原蛋白的促进作用,可自行查找相关资料。
一般有胶囊、粉剂、液体等类型。除了粉剂,其它都容易携带服用,且一般不存在异味。
但粉剂也有一个好处是可以添加到不同食物中,如奶昔、饮料等,可以让味道多变。
胶原蛋白合成过程
富含图中三种氨基酸的食物或胶原蛋白补剂,对于合成胶原蛋白更加有益处。
以上就是如何选择胶原蛋白的一些情况,如果有帮助,点赞分享吧。谢谢!
‘玖’ 胶原蛋白是液体比较好,还是颗粒药丸还是粉
20岁不必每天都吃,因为体内胶原蛋白还不会过量流失。 要吃也吃粉剂,液体和胶囊都不要考虑。 胶囊含量低,液体添加物过多价格贵。 粉末找国产的就可以,关注一下厂家的资质,有无QS认证等等,同时关注相关的胶原蛋白氨基酸检测报告和分子检测报告。 氨基酸含量百分之99.5以上,分子量在1000-3000道尔顿的多肽是最好被人体肠道吸收的口服胶原蛋白。
‘拾’ 三型胶原蛋白要醒吗
不要。三型胶原蛋白不要醒,会损坏蛋白质中原有的结构。三型胶原蛋白是胞外基质中最主要告宴闷的水不溶性纤维蛋白,可以补充皮肤所需要的胶原蛋白大分子,同时也可以是皮祥兆肤看起来更加袜弯的光滑有弹性,加快皮肤的新陈代谢。