导航:首页 > 燕窝功效 > 1型胶原羟基末端肽升高怎么办

1型胶原羟基末端肽升高怎么办

发布时间:2022-06-14 11:24:27

❶ Ⅰ型胶原羟基端前肽

Ⅰ型胶原是人体最丰富的胶原蛋白形式,是骨组织中唯一的胶原,占骨质的90%,Ⅰ型胶原吡啶交联终肽(ictp)是Ⅰ型胶原的特异性成份,也是目前唯一知道从构成胶原纤维分子中释出的胶联.只来源于破坏的成熟的骨基质,不会在新骨形成过程中从新形成的骨质中产生,以完整的免疫源性肽形式进入血中,不再进一步分解,是新发现的溶骨指标,能直接反映溶骨的范围,且不受摄入食物的影响.大部分骨代谢指标会有明显变化,在鉴别某些骨骼疾病时会有困难.而ictp受其影响很小,只反映骨骼疾病的变化.ictp在生理性骨代谢中的反应迟缓,它的变化反应骨质病理性破坏.
血清Ⅰ型胶原吡啶交联终肽浓度在反映类风湿关节炎的活动性,Ⅰ型胶原吡啶交联终肽是类风湿关节炎早期诊断,病情监测及疗效观察的可靠辅助诊断指标.而且Ⅰ型胶原吡啶交联终肽还常出现在恶性肿瘤发生骨转移后.
如果ictp升高,建议到医院详细检查身体状况,着重检查有无类风湿关节炎和有无恶性肿瘤伴骨转移. .....

❷ 关于胶原末端肽的组织抗原性

胶原的抗原性相当低,在1954年以前,甚至认为胶原不具有抗原性。最近的研究表明,胶原有3种类型的抗原因子:第1类是由胶原肽链非螺旋的端肽引起的;第2类是由胶原三股螺旋的构象引起的;第3类是由α链螺旋区的氨基酸顺序引起的。

第2类抗原因子仅存在于天然胶原分子中,第3类只出现在变性胶原中,而第1类抗原因子在天然和变性胶原蛋白中均存在。20世纪90年代以来,人们发现Ⅰ型胶原的免疫原性比Ⅲ型、Ⅴ型Ⅵ型胶原低得多,其组织胶原的端肽的免疫原性比螺旋微区以及其它微区都要强。

因而,在制备可溶性胶原医用产品时,应除去胶原的端肽;但应用于组织基的胶原材料,则应保留端肽,目的是保存交联位点,赋予组织材料所需要的完整结构。研究发现用戊二醛交联,可部分降低胶原材料的免疫原性[6]。

——胶原蛋白网collagen.cc

❸ 总i型前胶原氨基末端肽高是怎么回事

蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。

(一)氨基酸

在进行合成多肽链之前,必须先经过活化,然后再与其特异的trna结合,带到mrna相应的位置上,这个过程靠氨基酰trna合成酶催化,此酶催化特定的氨基酸与特异的trna相结合,生成各种氨基酰trna.每种氨基酸都靠其特有合成酶催化,使之和相对应的trna结合,在氨基酰trna合成酶催化下,利用atp供能,在氨基酸羧基上进行活化,形成氨基酰-amp,再与氨基酰trna合成酶结合形成三联复合物,此复合物再与特异的trna作用,将氨基酰转移到trna的氨基酸臂(即3'-末端cca-oh)上原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸trna,由n10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。

前面讲过运载同一种氨基酸的一组不同trna称为同功trna。一组同功trna由同一种氨酰基trna合成酶催化。氨基酰trna合成酶对trna和氨基酸两者具有专一性,它对氨基酸的识别特异性很高,而对trna识别的特异性较低。

氨基酰trna合成酶是如何选择正确的氨基酸和trna呢?按照一般原理,酶和底物的正确结合是由二者相嵌的几何形状所决定的,只有适合的氨基酸和适合的trna进入合成酶的相应位点,才能合成正确的氨酰基trna。现在已经知道合成酶与l形trna的内侧面结合,结合点包括接近臂,dhu臂和反密码子臂d柄、反密码子和可变环与酶反应

乍看起来,反密码子似乎应该与氨基酸的正确负载有关,对于某些trna也确实如此,然而对于大多数trna来说,情况并非如此,人们早就知道,当某些trna上的反密码子突变后,但它们所携带的氨工酸却没有改变。1988年,候稚明和schimmel的实验证明丙氨酸trna酸分子的氨基酸臂上g3:u70这两个碱基发生突变时则影响到丙氨酰trna合成酶的正确识别,说明g3:u70是丙氨酸trna分子决定其本质的主要因素。trna分子上决定其携带氨基酸的区域叫做副密码子。一种氨基酰trna合成酶可以识别以一组同功trna,这说明它们具有共同特征。例如三种丙氨酸trna(trnaalm/cua,trnaaim/ggc,trnaain/ugc都具有g3:u70副密码子。)但没有充分的证据说明其它氨基酰trna合成酶也识别同功trna组中相同的副密码子。另外副密码子也没有固定的位置,也可能并不止一个碱基对。

(二)多肽链合成的起始

核蛋白体大小亚基,mrna起始trna和起始因子共同参与肽链合成的起始。

1、大肠杆菌细胞翻译起始复合物形成的过程:

(1)核糖体30s小亚基附着于mrna起始信号部位:原核生物中每一个mrna都具有其核糖体结合位点,它是位于aug上游8-13个核苷酸处的一个短片段叫做sd序列。这段序列正好与30s小亚基中的16s rrna3’端一部分序列互补,因此sd序列也叫做核糖体结合序列,这种互补就意味着核糖体能选择mrna上aug的正确位置来起始肽链的合成,该结合反应由起始因子3(if-3)介导,另外if-1促进if-3与小亚基的结合,故先形成if3-30s亚基-mrna三元复合物。

(2)30s前起始复合物的形成:在起始因子2作用下,甲酰蛋氨酰起 始trna与mrna分子中的aug相结合,即密码子与反密码子配对,同时if3从三元复合物中脱落,形成30s前起始复合物,即if2-3s亚基-mrna-fmet-trnafmet复合物,此步需要gtp和mg2 参与。

(3)70s起始复合物的形成:50s亚基上述的30s前起始复合物结合,同时if2脱落,形成70s起始复合物,即30s亚基-mrna-50s亚基-mrna-fmet-trnafmet复合物。此时fmet-trnafmet占据着50s亚基的肽酰位。而a位则空着有待于对应mrna中第二个密码的相应氨基酰trna进入,从而进入延长阶段,2、真核细胞蛋白质合成的起始

真核细胞蛋白质合成起始复合物的形成中需要更多的起始因子参与,因此起始过程也更复杂。

(1)需要特异的起始trna即,-trnafmet,并且不需要n端甲酰化。已发现的真核起始因子有近10种(eukaryote initiation factor,eif)

(2)起始复合物形成在mrna5’端aug上游的帽子结构,(除某些病毒mrna外)

(3)atp水解为adp供给mrna结合所需要的能量。真核细胞起始复合物的形成过程是:翻译起始也是由eif-3结合在40s小亚基上而促进80s核糖体解离出60s大亚基开始,同时eif-2在辅eif-2作用下,与met-trnafmet及gtp结合,再通过eif-3及eif-4c的作用,先结合到40s小亚基,然后再与mrna结合。

mrna结合到40s小亚基时,除了eif-3参加外,还需要eif-1、eif-4a及eif-4b并由atp小解为adp及pi来供能,通过帽结合因子与mrna的帽结合而转移到小亚基上。但是在mrna5’端并未发现能与小亚基18srna配对的s-d序列。目前认为通过帽结合后,mrna在小亚基上向下游移动而进行扫描,可使mrna上的起始密码aug在met-trnafmet的反密码位置固定下来,进行翻译起始。

通过eif-5的作用,可使结合met-trnafmet·gtp及mrnar40s小亚基与60s大亚基结合,形成80s复合物。eif-5具有gtp酶活性,催化gtp水解为gdp及pi,并有利于其它起始因子从40s小亚基表面脱落,从而有利于40s与60s两个亚基结合起来,最后经eif-4d激活而成为具有活性的80smet-trnafmet· mrna起始复合物。
(三)多肽链的延长

在多肽链上每增加一个氨基酸都需要经过进位,转肽和移位三个步骤。

(1)为密码子所特定的氨基酸trna结合到核蛋白体的a位,称为进位。氨基酰trna在进位前需要有三种延长因子的作用,即,热不稳定的ef(unstable temperature,ef)ef-tu,热稳定的ef(stable temperature ef,ef-ts)以及依赖gtp的转位因子。ef-tu首先与gtp结合,然后再与氨基酰trna结合成三元复合物,这样的三元复合物才能进入a位。此时gtp水解成gdp,ef-tu和gdp与结合在a位上的氨基酰trna分离
肽键的形成

①核蛋白体“给位”上携甲酰蛋氨酰 基(或肽酰)的trna

②核蛋白体“受体”上新进入的氨基酰trna;

③失去甲酰蛋氨酰基(或肽酰)后,即将从核蛋白体脱落的trna;

④接受甲酰蛋氨酰基(或肽酰)后已增长一个氨基酸残基的肽键

(2)转肽--肽键的形成(peptide bond formation)

在70s起始复合物形成过程中,核糖核蛋白体的p位上已结合了起始型甲酰蛋氨酸trna,当进位后,p位和a位上各结合了一个氨基酰trna,两个氨基酸之间在核糖体转肽酶作用下,p位上的氨基酸提供α-cooh基,与a位上的氨基酸的α-nh2形成肽键,从而使p位上的氨基酸连接到a位氨基酸的氨基上,这就是转肽。转肽后,在a位上形成了一个二肽酰trna(图18-13)。

(3)移位(translocation)

转肽作用发生后,氨基酸都位于a位,p位上无负荷氨基酸的trna就此脱落,核蛋白体沿着mrna向3’端方向移动一组密码子,使得原来结合二肽酰trna的a位转变成了p位,而a位空出,可以接受下一个新的氨基酰trna进入,移位过程需要ef-2,gtp和mg2 的参加(图18-14)。

以后,肽链上每增加一个氨基酸残基,即重复上述进位,转肽,移位的步骤,直至所需的长度,实验证明mrna上的信息阅读是从5’端向3’端进行,而肽链的延伸是从氮基端到羧基端。所以多肽链合成的方向是n端到c端
(四)翻译的终止及多肽链的释放

无论原核生物还是真核生物都有三种终止密码子uag,uaa和uga。没有一个trna能够与终止密码子作用,而是靠特殊的蛋白质因子促成终止作用。这类蛋白质因子叫做释放因子,原核生物有三种释放因子:rf1,rf2t rf3。rf1识别uaa和uag,rf2识别uaa和uga。rf3的作用还不明确。真核生物中只有一种释放因子erf,它可以识别三种终止密码子。

不管原核生物还是真核生物,释放因子都作用于a位点,使转肽酶活性变为水介酶活性,将肽链从结合在核糖体上的trna的cca末凋上水介下来,然后mrna与核糖体分离,最后一个trna脱落,核糖体在if-3作用下,解离出大、小亚基。解离后的大小亚基又重新参加新的肽链的合成,循环往复,所以多肽链在核糖体上的合成过程又称核糖体循环(ribosome cycle)(图18-16)。

(五)多核糖体循环

上述只是单个核糖体的翻译过程,事实上在细胞内一条mrna链上结合着多个核糖体,甚至可多到几百个。蛋白质开始合成时,第一个核糖体在mrna的起始部位结合,引入第一个蛋氨酸,然后核糖体向mrna的3’端移动一定距离后,第二个核糖体又在mrna的起始部位结合,现向前移动一定的距离后,在起始部位又结合第三个核糖体,依次下去,直至终止。两个核糖体之间有一定的长度间隔,每个核糖体都独立完成一条多肽链的合成,所以这种多核糖体可以在一条mrna链上同时合成多条相同的多肽链,这就大大提高了翻译的效
多聚核糖体的核糖体个数,与模板mrna的长度有关,例如血红蛋白的多肽链mnra编码区有450个核苷酸组成,长约150nm 。上面串连有5-6个核糖核蛋白体形成多核糖体。而肌凝蛋白的重链mrna由5400个核苷酸组成,它由60多个核糖体构成多核糖体完成多肽链的合成

❹ 如何测定I型前胶原羧基端前肽

I型前胶原羧基端前肽的正常值:50-200ug/L

测定I型前胶原羧基端前肽的临床意义表现在I型前胶原羧基端前肽增高:见于儿童发育期、妊娠最后3个月、骨肿瘤,特别是前列腺癌骨转移、畸形性骨炎、酒精性肝炎和肺纤维化等。

I型前胶原羧基端前肽降低:见于绝经期后骨质疏松病人经雌激素治疗6个月后可降低30%,但其降低的机制尚不清楚。

(4)1型胶原羟基末端肽升高怎么办扩展阅读:

I型前胶原羧基端前肽(是骨组织中惟一的胶原,占骨基质的90%以上。血清中I型前胶原羧基端前肽的水平是反映成骨细胞活动和骨形成以及反映I型胶原合成速率的特异指标。它可以被肝脏吸收,通过上皮细胞甘露糖受体结合而被清除,所以易受肝功能的影响。

血清Ⅰ型前胶原羧基端前肽(PICP):是成骨细胞合成胶原时的中间产物,也是反映成骨细胞活动状态的敏感指标。PICP升高可见于畸形性骨炎、骨肿瘤、儿童发育期、妊娠后期,老年性骨质疏松症PICP变化不明显。

❺ l型胶原氨基末端肽(NTX)是什么东西,我只知道是与骨形成有关的,有木有人帮忙回答一下

l型胶原是成骨细胞分泌的骨基质的主要成分,之后进行矿化,形成新的骨

❻ 胶原性疾病的I型胶原基因变异

I型胶原基因变异性疾病 单个碱基的取代是突变的主要形式,最常发生的是COL1A1或COL1A2上甘氨酸的密码子被其他氨基酸的密码子所取代,而甘氨酸是三股螺旋中每条α链上的最本质的氨基酸。当其被取代时,就会导致疾病的发生。除取代单个碱基外,其他突变还包括插入、缺失、DNA剪接缺陷及COL1A1无效等位基因的出现。
每个成骨不全的家族有自己固定的缺陷,但也有人报道,曾在不同的家族出现了同一突变,而同一家族中也可出现Ⅰ型胶原基因的不同突变。如果由于缺陷链的存在影响了三股螺旋的折叠,那么未折叠的分子将在纤维母细胞内发生堆积,然后被降解。如果缺陷的α链已经形成了三股螺旋,螺旋中缺陷的分子可以扭曲,进而妨碍正常胶原纤维的形成,影响纤维的形态。
由于Ⅰ型胶原分子有2条α1(Ⅰ)链和1条α2(Ⅰ)链,因此发生在α2(Ⅰ)链COL1A2的突变要比发生在α1(Ⅰ)链COL1A1相类似突变的后果温和。α链上甘氨酸被替代的位置以及其他突变发生的位置在很大程度上决定着突变的后果。
由于三股螺旋结构的形成是从C端朝向N端,因此在多数情况下靠近三股螺旋片段C末端的突变,比发生在N端附近的突变更为严重。 Ehlers2Dahlos综合征(EDS)是Ⅰ型胶原基因突变和(或)胶原合成酶活性缺陷导致的疾病,临床分10个亚型。其特征是关节伸展过度,皮肤变薄、脆弱、弹性差,并有其他结缔组织受损的表现,可出现不同部位的憩室或腹股沟疝等。
EDSⅦA和ⅦB型是COL1A1(ⅦA型)或COL1A2(ⅦB型)突变,是由于I型前胶原分子中前α1(Ⅰ)或前α2(Ⅰ)mRNA在加工过程中外显子6或外显子6的一部分出现跳跃。外显子6编码的序列包括前胶原N2蛋白酶作用的断裂部位。因此,外显子6的突变能阻止N端前多肽的断裂,使I型胶原丧失正常结构,出现一系列临床症状。
EDSⅦC型是由于N2蛋白酶活性的缺陷而阻断了Ⅰ型前胶原裂解过程。 以指(跖)细长、晶体脱位和心血管系统异常(以主动脉病变最多见,严重时可出现夹层动脉瘤)为其主要特征的Marfan综合征是由于α2(Ⅰ)链2Gly2X2Y三联体中精氨酸在Y的位置上代替了谷氨酸[1]。
骨质疏松症是骨生成缺陷的一种类型,也是I型胶原基因突变性疾病。骨生成缺陷的临床分型变异很大,有的在出生前后发生死亡,有的患者临床表现则极其轻微。因此,在临床上很难将骨生成缺陷患者从有骨质疏松症和骨折史的家族中筛选出来。
第一个证明骨质疏松患者Ⅰ型胶原基因突变的证据是1位来自有隐性遗传的骨生成缺陷患者的父母,前α2(Ⅰ)链C端多肽的COL1A2基因密码序列有4bp缺陷,这4bp的缺陷改变了前多肽最后33个氨基酸的结构。患者的父母是第三代表兄妹突变杂合携带者,患者从父母遗传了同样的缺陷。其父母没有任何骨生成缺陷的临床表现,但是两者都有早期出现(30岁左右)骨质疏松的X线证据。
Spotila等[2]于1991年发现某些出现骨质疏松的患者有氨基酸替代突变,α2(Ⅰ)链三股螺旋片段中619位氨基酸位置上的甘氨酸被丝氨酸所替代,或α1(Ⅰ)链三股螺旋结构的第43位甘氨酸被半胱氨酸所替代。此外,Ⅰ型胶原突变导致骨质疏松的其他例子还有COL1A2内含子9中11bp缺失,使α2(Ⅰ)mRNA在形成过程中出现外显子9的跳跃现象。α1(Ⅰ)链三股螺旋片段19位甘氨酸被半胱氨酸替代的患者也可出现关节过度伸展,还可出现脊椎骨质疏松、脊柱侧凸以及强直性脊柱炎。X或Y位置上的取代要比甘氨酸位置上被取代的后果温和得多,常常不引起骨生成缺陷,而仅仅是引起骨生成减少及骨质疏松等。

❼ 腰椎骨质疏松血压会升高吗

一、什么是骨质疏松症? 是以骨组织显微结构受损,骨矿成分和骨基质等比例地不断减少,骨质变薄,骨小梁数量减少,骨脆性增加和骨折危险度升高的一种全身骨代谢障碍的疾病。在医学上,骨质疏松症最早是Pornmer在1885年提出来的,直到1990年在丹麦举行的国际骨质疏松研讨会上,骨质疏松症才有了一个明确的定义,并得到世界的公认:原发性骨质疏松症是以骨量减少、骨的微观结构退化为特征的,致使骨的脆性增加以及易于发生骨折的一种全身性骨骼疾病。主要表现为:骨量减少、骨钙溶出、脊柱压缩性骨折,致使“龟背”出现,并伴老年呼吸困难、骨质增生、高血压、老年痴呆、糖尿病等一些老年性疾病;骨的微观结构退化,骨的强度下降,脆性增加,难以承载原来负荷。 二、骨质疏松症的危害 骨质疏松症导致骨骼受力不均,或骨质脆弱、机体产生修复性反应而形成骨刺,这种骨质成份异常分布的结果,也会引起椎间盘突出,骨质疏松症往往是骨折、骨坏死、骨折不愈合的内在原因,类风湿与风湿性关节炎最大的危害就在于软骨下骨组织蜂窝样变而丧失功能,而引起的原因与免疫细胞从骨髓中涌向关节密切相关。骨质疏松症可产生骨痛、驼背、身材变矮、骨折乃至致残等后果。常见的骨质疏松性骨折有髋骨骨折和脊柱骨折,而且往往还会引起继发性并发症。在10月20日“世界骨质疏松日”前夕,上海医学会骨质疏松学会主任委员、华东医院教授朱汉民提出如此警示:骨质疏松症会使椎体骨畸形,腹部受压引发胃肠道疾病;骨质疏松症也会使脊柱骨脆弱,卧床不起,引发肺部感染。 三、骨质疏松症分类 骨质疏松症(有时也简称为骨质疏松)可分为以下几类: (1)原发性骨质疏松症:如老年性骨质疏松症、绝经后骨质疏松症等。 (2)继发性骨质疏松症:如甲亢性骨质疏松症、糖尿病性骨质疏松症等。 (3)原因不明特发性骨质疏松症:如遗传性骨质疏松症等。 根据骨质疏松发生的范围又可分为以下两类: (1)全身性骨质疏松症:如老年性骨质松症、甲亢性骨质疏松症等。 (2)局限性骨质疏松症:如类风湿性关节炎性骨质疏松症、肢体石膏固定后引起的局部骨质疏松症等。 四、骨质疏松症的病因病理 引起中老年人骨质丢失的因素是十分复杂的,近年来研究认为与下列因素密切相关。 (1)中、老年人性激素分泌减少是导致骨质疏松的重要原因之一。绝经后雌激素水平下降,致使骨吸收增加已是公认的事实。 (2)随年龄的增长,钙调节激素的分泌失调致使骨代谢紊乱。 (3)老年人由于牙齿脱落及消化功能降低,骨纳差,进良少,多有营养缺乏,致使蛋白质,钙,磷、维生素及微量元素摄入不足。 (4)随着年龄的增长,户外运动减少也是老年人易患骨质疏松症的重要原因。 (5)近年来分子生物学的研究表明骨疏松症与维生素D受体(VDR)基因变异有密切关系。 五、骨质疏松症的症状 (1)疼痛。原发性骨质疏松症最常见的症症,以腰背痛多见,占疼痛患者中的70%-80%。疼痛沿脊柱向两侧扩散,仰卧或坐位时疼痛减轻,直立时后伸或久立、久坐时疼痛加剧,日间疼痛轻,夜间和清晨醒来时加重,弯腰、肌肉运动、咳嗽、大便用力时加重。一般骨量丢失12%以上时即可出现骨痛。老年骨质疏松症时,椎体骨小梁萎缩,数量减少,椎体压缩变形,脊柱前屈,腰疹肌为了纠正脊柱前屈,加倍收缩,肌肉疲劳甚至痉挛,产生疼痛。新近胸腰椎压缩性骨折,亦可产生急性疼痛,相应部位的脊柱棘突可有强烈压痛及叩击痛,一般2-3周后可逐渐减轻,部分患者可呈慢性腰痛。若压迫相应的脊神经可产生四肢放射痛、双下肢感觉运动障碍、肋间神经痛、胸骨后疼痛类似心绞痛,也可出现上腹痛类似急腹症。若压迫脊髓、马尾还中影响膀胱、直肠功能。 (2)身长缩短、驼背。多在疼痛后出现。脊椎椎体前部几乎多为松质骨组成,而且此部位是身体的支柱,负重量大,尤其第11、12胸椎及第3腰椎,负荷量更大,容易压缩变形,使脊椎前倾,背曲加剧,形成驼背,随着年龄增长,骨质疏松加重,驼背曲度加大,致使膝关节挛拘显着。每人有24节椎体,正常人每一椎体高度约2cm左右,老年人骨质疏松时椎体压缩,每椎体缩短2mm左右,身长平均缩短3-6cm。 (3)骨折。这是退行性骨质疏松症最常见和最严重的并发症。 (4)呼吸功能下降。胸、腰椎压缩性骨折,脊椎后弯,胸廓畸形,可使肺活量和最大换气量显着减少,患者往往可出现胸闷、气短、呼吸困难等症状。 六、骨质疏松症的诊断检查 骨质疏松症的诊断需依靠临床表现、骨量测定、X线片及骨转换生物化学的指标等综合分析判断。 1.生化检查:测定血、尿的矿物质及某些生化指标有助于判断骨代谢状态及骨更新率的快慢,对骨质疏松症的鉴别诊断有重要意义。 (1)骨形成指标。 (2)骨吸收指标:1)尿羟脯氨酸。2)尿羟赖氨酸糖甙。3)血浆抗酒石酸盐酸性磷酸酶。4)尿中胶原吡啶交联(PYr)或I型胶原交联N末端肽(NTX)。 (3)血、尿骨矿成分的检测:1)血清总钙。2)血清无机磷。3)血清镁。4)尿钙、磷、镁的测定。 2.X线检查:,X线仍不失为一种较易普及的检查骨质疏松症的方法。 3.骨矿密度测量: (1)单光子吸收测定法(SPA)。 (2)双能X线吸收测定法(DEXA)。 (3)定量CT(QCT)。 (4)超声波(USA)。 七、骨质疏松症的药物治疗 1、原发性I型骨质疏松症属高代谢型,是由于绝经后雌激素减少,使骨吸收亢进引起骨量丢失,因此治疗骨质疏松须阴阳同补且须平衡,更不能因治疗而导致失衡。直接补充性激素容易引发癌症,因而只能补充性激素类似物,如大豆异黄酮、淫羊霍,且必须气血双补、延缓衰老带来的器官结构和功能的老化。 2、原发性II型骨质疏松症,其病因是由于增龄老化所致调节激素失衡使骨形成低下,应用骨形成促进剂,如活性维生素D、钙制剂和维生素K2等。 3、高效治疗药物:骨肽片

❽ p1np指标高说明什么

摘要 P1NP (1型前胶原氨基端延长肽) 和β-CrossLaps (血I型胶原蛋白的羧基端降解产物)

❾ 骨质疏松引起的疼痛怎么办

骨质疏松症是生活中比较常见的,尤其是对于更年期的女性来说,是比较容易出现这种现象的,骨质疏松会让患者身材变形,如变矮,驼背,严重了就会导致骨折的发生,而不少患者则是出现骨骼部位疼痛不止的现象,当出现疼痛时,要怎么办呢?其实主要还是要治疗骨质疏松,改善骨质疏松现象。下面就针对骨质疏松疼痛不已的现象,介绍一下处理的方法。

❿ 青少年物理造成的骨骼松动怎么办

青少年保持骨骼健壮,平日里就要多参加一些体育运动,多补充一些钙质比较多的食物,多晒太阳,保持足够的睡眠。在中国,很多人都会出现骨质疏松的症状,为了预防骨质疏松就要从青少年抓起,其中保持足够的睡眠尤为重要,青少年在睡眠中身体才会增长的最快。

1、多吃一些含有钙质,蛋白质比较多的食物

人在睡眠中才会长个,青少年正处在身体发育期,一定要睡得好,才能利于骨骼发育。每天要保证八个小时的睡眠,如果低于这个时间,就会影响我们的骨骼发育。

青少年时期是人一生中的黄金期,如果想长个,就要积极地参与体育运动当中,还要科学的饮食搭配,保证足够的睡眠,才能有利于身体健康。定期地到医院去检查自己的身体情况,如果发现身体里面缺少微量元素,一定要做到及时补充,只有身体的营养不缺少,才能够让我们的骨骼发育很快。

阅读全文

与1型胶原羟基末端肽升高怎么办相关的资料

热点内容
一次燕窝要多少克 浏览:1165
面部血管瘤怎么治不留疤 浏览:2019
yamii胶原蛋白怎么吃 浏览:1416
贵阳祛斑哪个好先荐利美康 浏览:1345
和田玉戈壁料没油性怎么办 浏览:960
鹅耳朵冻疮涂什么精油 浏览:1978
燕窝有什么不好的副作用吗 浏览:948
皮肤使用爽肤水有什么好处 浏览:1323
漂白燕窝炖不烂怎么办 浏览:1485
燕窝跟什么吃最好 浏览:1726
容易长痘痘油皮怎么可以做美白 浏览:1553
医院和美容院哪个祛斑好 浏览:1713
山羊奶面膜与龙血精华面膜哪个好 浏览:1771
学生干皮适合什么面霜 浏览:1540
生姜和什么一起煮能祛斑 浏览:1393
两三个月的宝宝选面霜怎么选 浏览:1607
嘴巴上和下面长痘怎么治 浏览:1712
南京医院激光祛痘印多少钱 浏览:1054
燕窝每天多少毫升合适 浏览:1649
胶原蛋白肽分子量多少利于吸收 浏览:995