A. 石油儲運原理
石油儲存原理,我們以地下水封洞庫儲存油的原理進行講解一下。
地下水封洞庫儲油原理:地下水封洞庫處於穩定的地下水位線以下一定的深度(5m為宜),通過人工在地下岩石中開挖出一定容積的洞室,利用穩定地下水的水封作用密封儲存在洞室內的石油。
洞室開挖前,地下水通過節理裂隙等滲透到岩層的深部並完全充滿岩層空隙。當儲油洞庫開挖形成後,周圍岩石中的裂隙水就向被挖空的洞室流動,並充滿洞室。
在洞室中注入油品後,油品周圍會存在一定的壓力差,因而在任一油麵上,水壓力都大於油壓力,使油品不能從裂隙中漏走。同時利用油比水輕,以及油水不能混合的性質,流入洞內的水則沿洞壁匯集到洞底部形成水墊層,可由水泵抽出。
地下水封儲油洞庫作為地下儲油庫的一種,可以說是目前儲存石油的最好形式,在未來的若干年裡,我國將大力建設地下水封儲油洞庫,但是對於地下水封儲油洞庫的建設,也是有很多困難的。
B. 急!原油的特性是什麼
石油也稱原油或黑色金子,是一種粘稠的、深褐色(有時有點綠色的)液體。地殼上層部分地區有石油儲存。它由不同的碳氫化合物混合組成,其主要組成成分是烷烴,此外石油中還含硫、氧、氮、磷、釩等元素。不過不同油田的石油成分和外貌可以有很大差別。石油主要被用來作為燃油和汽油,燃料油和汽油組成目前世界上最重要的一次能源之一。石油也是許多化學工業產品——如溶劑、化肥、殺蟲劑和塑料等的原料。 當今88%開採的石油被用作燃料,其它的12%作為化工業的原料。
原油中碳元素佔83%一87%,氫元素佔11%一14%,其它部分則是硫、氮、氧及金屬等雜質。
石油的發現
我國是世界上最早發現和應用石油的國家。
900年前宋代著名學者沈括,對我國古代地質學和古生物學知識方面提出了極其卓越的見解。他的見解比西歐學者最初認識到化石是生物遺跡要早四百年。有一次沈括奉命察訪河北西路時,發現太行山山崖間有很多螺蚌殼及如鳥卵之石,從而推斷這里原來是太古時代的海濱,是由於海濱的介殼和淤泥堆積而形成的,並根據古生物的遺跡正確地推斷出海陸的變遷。
1080年(元豐三年),沈括出知延州(今延安)。在任上他發現和考察了鹿延境內石油礦藏與用途。他說:「鹿延境內有石油。舊說高奴 縣出脂水,即此也。生於水際,沙石與泉水相雜,恫恫而出。土人以雉尾囊之,乃采入罐中。頗似淳漆,燃之如麻,但煙甚濃,所沾幄幕皆黑。予疑其煙可用,試掃其煤以為墨,黑光如漆,松墨不及也,道大為之,其識文為『延州石液』者是也。此物後必大行於世,自予始為之。蓋石油至多,生於地中無窮,不若松木有時而竭。」從上面記載來看,沈括不僅發現了石油並且也知道了他的用途。雖然他當時所謂用途著重於煙墨製造,但他確預料到「此物後必大行於世」,這一遠見為今天所驗證。而今天我們所說「石油」二字也是他創始使用的,並寫了我國最早的一首石油詩:「二朗山下雪紛紛,旋卓穹廬學塞人化盡素衣冬不老,石油多似沭陽塵。」
人類正式進入石油時代是在1967年。這一年石油在一次能源消費結構中的比例達到40.4%,而煤炭所佔比例下降到38.8%。石油需求的增長和石油貿易的擴大起因於石油在工業生產中的大規模使用。一戰以前,石油主要被用於照明,主要產油國美國和俄羅斯同時也是主要的消費國。在一戰中,石油的戰略價值已初步顯現出來,由於石油燃燒效能高,輕便,對於軍隊戰鬥力的提高具有重大戰略意義。20世紀20年代,由於石油成為內燃機的動力,石油需求和貿易迅速擴大。據王亞棟的統計,到1929年石油貿易額已達到11.7億美元。該時期國際石油貨流的流向主要是從美國、委內瑞拉流向西歐。同時,蘇聯的石油得到迅速恢復和發展。到20世紀30年代末,美、蘇成為主要的石油出口國,石油國際貿易開始在全球能源貿易中占據顯要位置,推動了能源國際貿易的迅速增長,並動搖了煤炭在國際能源市場中的主體地位。二戰期間,石油的地位舉足輕重。美國在二戰期間成為盟國的主要能源供應者。二戰後,美國一度掌握世界原油產量的2/3。從1859 年在賓夕法尼亞打出了第一口油井到二戰之後的一段時間,世界能源版圖被稱之為「墨西哥灣時代」。王亞棟認為,「墨西哥灣時代」的形成發展期同時也是美國的政治、經濟和軍事實力不斷膨脹,最終在西方世界確立其霸權的時期。這一時期幾乎與美國國內的石油開發同步。美國在「墨西哥灣時代」對石油的控制,促進鞏固了美國在世界政治經濟格局中的地位。石油成為美國建立世界霸權道路上的重要助推劑。
分類和理化性質
按組成分類:石蠟基原油、環烷基原油和中間基原油三類;
按硫含量分類:超低硫原油、低硫原油、含硫原油和高硫原油四類;
按比重分類:輕質原油、中質原油、重質原油以三類。
原油的性質包含物理性質和化學性質兩個方面。物理性質包括顏色、密度、粘度、凝固點、溶解性、發熱量、熒光性、旋光性等;化學性質包括化學組成、組分組成和雜質含量等。
密度:原油相對密度一般在0.75~0.95之間,少數大於0.95或小於0.75,相對密度在0.9~1.0的稱為重質原油,小於0.9的稱為輕質原油。
粘度:原油粘度是指原油在流動時所引起的內部摩擦阻力,原油粘度大小取決於溫度、壓力、溶解氣量及其化學組成。溫度增高其粘度降低,壓力增高其粘度增大,溶解氣量增加其粘度降低,輕質油組分增加,粘度降低。原油粘度變化較大,一般在1~100mPa•s之間,粘度大的原油俗稱稠油,稠油由於流動性差而開發難度增大。一般來說,粘度大的原油密度也較大。
凝固點:原油冷卻到由液體變為固體時的溫度稱為凝固點。原油的凝固點大約在-50℃~35℃之間。凝固點的高低與石油中的組分含量有關,輕質組分含量高,凝固點低,重質組分含量高,尤其是石蠟含量高,凝固點就高。
含蠟量:含蠟量是指在常溫常壓條件下原油中所含石蠟和地蠟的百分比。石蠟是一種白色或淡黃色固體,由高級烷烴組成,熔點為37℃~76℃。石蠟在地下以膠體狀溶於石油中,當壓力和溫度降低時,可從石油中析出。地層原油中的石蠟開始結晶析出的溫度叫析蠟溫度,含蠟量越高,析蠟溫度越高。
析蠟溫度高,油井容易結蠟,對油井管理不利。含硫量是指原油中所含硫(硫化物或單質硫分)的百分數。原油中含硫量較小,一般小於1%,但對原油性質的影響很大,對管線有腐蝕作用,對人體健康有害。根據硫含量不同,可以分為低硫或含硫石油。
含膠量:含膠量是指原油中所含膠質的百分數。原油的含膠量一般在5%~20%之間。膠質是指原油中分子量較大(300~1000)的含有氧、氮、硫等元素的多環芳香烴化合物,呈半固態分散狀溶解於原油中。膠質易溶於石油醚、潤滑油、汽油、氯仿等有機溶劑中。
其他:原油中瀝青質的含量較少,一般小於1%。瀝青質是一種高分子量(大於1000以上)具有多環結構的黑色固體物質,不溶於酒精和石油醚,易溶於苯、氯仿、二硫化碳。瀝青質含量增高時,原油質量變壞。
原油中的烴類成分主要分為烷烴、環烷烴、芳香烴。根據烴類成分的不同,可分為的石蠟基石油、環烷基石油和中間基石油三類。石蠟基石油含烷烴較多;環烷基石油含環烷烴、芳香烴較多;中間基石油介於二者之間。
目前我國已開採的原油以低硫石蠟基居多。大慶等地原油均屬此類。其中,最有代表性的大慶原油,硫含量低,蠟含量高,凝點高,能生產出優質煤油、柴油、溶劑油、潤滑油和商品石蠟。勝利原油膠質含量高(29%),比重較大(0.91左右),含蠟量高(約15-21%),屬含硫中間基。汽油餾分感鉛性好,且富有環烷烴和芳香烴,故是重整的良好原料。
石油的衡量單位
石油最常用的衡量單位「桶」為一個容量單位,即42加侖。因為各地出產的石油的密度不盡相同,所以一桶石油的重量也不盡相同。一般地,一噸石油大約有8桶。具體換算關系參照下表。
升(L) 立方米(m3) 加侖(美) 加侖(英) 桶(油)
158.98 0.15898 42 34.973 1
1 0.001 0.26418 0.21998 0.00629
1000 1 264.18 219.98 6.29
儲存與裝卸
1、原油和油品儲存的基本要求
原油和油品儲存的主要方式有散裝儲存和整裝儲存,整裝儲存是指以標准桶的形式儲存,散裝儲存是指以儲油罐的形式儲存,儲油罐可分為金屬油罐和非金屬油罐,金屬油罐又可分為立式圓筒形和卧式圓筒形。按照油庫的建造方式不同,散裝原油或油品還可採用地上儲油、半地下儲油和地下儲油、水封石洞儲油、水下儲油等幾種方式。但不管採用哪種儲存方式,原油特別是油品的儲存都應滿足以下基本要求:
(1)防變質
在油品儲存過程中,要保證油品的質量,必須注意:降低溫度、空氣與水分、陽光、金屬對油品的影響。
(2)降損耗
目前油庫通常的做法是:選用浮頂油罐、內浮頂油罐;油罐呼吸閥下選用呼吸閥擋板;淋水降溫。
(3)提高油品儲存的安全性
由於油品火災危險性和爆炸危險性較大,故必須降低油品的爆炸敏感性,並應用阻燃性能好的材料。
2、原油和油品裝卸的基本要求
原油和油品的裝卸不外乎以下幾種形式:鐵路裝卸、水運裝卸、公路裝卸和管道直輸。其中根據油品的性質不同,可分為輕油裝卸和粘油裝卸;從油品的裝卸工藝考慮,又可分為上卸、下卸、自流和泵送等類型。但除管道直輸外,無論採用何種裝卸方式,原油和油品的裝卸必須滿足以下基本要求:
(1)必須通過專用設施設備來完成。
原油和油品的裝卸專用設施主要有:鐵路專用線和油罐車、油碼頭或靠泊點、油輪、棧橋或操作平台等;專用設備主要有:裝卸油鶴管、集油管、輸油管和輸油泵、發油灌裝設備、粘油加熱設備、流量計等。
(2)必須在專用作業區域內完成。
原油和油品的裝卸都有專用作業區,這些專用作業區通常設有隔離設施與周圍環境相隔離,且必須滿足嚴格的防火、防爆、防雷、防靜電要求。
(3)必須由受過專門培訓的專業技術人員來完成
(4)裝卸的時間和速度有較嚴格的要求。
C. 油氣田是怎麼被破壞的
在油、氣田中聚集起來的石油和天然氣既不可能在那裡永久地保存下去,也不可能長久地不發生變化。它們或者因為圈閉條件被破壞,或者因為儲油層物理性質被改變而被迫再次遷移;或者因為其他種種原因,變成了其他物質。
圈閉條件的破壞構造運動是圈閉條件被破壞的原因之一。構造運動始終普遍地存在於地殼之中,它有時為油氣的聚集提供有利條件,有時又是油、氣藏破壞的直接原因。由於地殼的褶皺、扭轉、擠壓等作用,可能在已經形成的油、氣田中造成一些與地表連通的斷裂和縫隙。圈閉條件被破壞的另一個原因是剝蝕作用。日復一日,年復一年的風化剝蝕作用使油、氣田的上覆地層逐漸減薄,以至使儲油層直接暴露於大氣之中。已經聚集的油、氣就通過這些裂縫、露頭漸漸流失。
油藏的破壞
除了上述原因使油氣田遭到破壞外,油、氣本身還會發生性質上的變化。引起這種變化的原因有時是氧化作用,有時是由與油、氣接觸的岩石所引起的接觸變質作用。
石油在地層中的氧化,一是由流經油、氣藏的水帶來的氧直接進行的,二是通過微生物進行的。直接氧化作用使石油變質,膠質增多;生物化學的氧化作用不僅可使石油變質,甚至能使油、氣藏完全破壞。
在接觸變質過程中,油、氣因岩石中的含氧礦物奪去了它分子中的氫而變質。同時,岩石也因與油、氣發生了化學反應而變質。
總之一句話,同世界上的任何事物一樣,油、氣藏(或油、氣田)從它形成時開始,就處在變化、運動之中。在這個過程中當聚集的速度超過了分散、變質的速度,它就走向形成,反之,則走向破壞。油、氣田的存在就是聚集和分散、形成和破壞這一對矛盾在油、氣運移中不斷地自行產生又不斷地自行解決的過程。
和油、氣藏及油、氣田的形成一樣,在破壞的過程中,各種因素也不是孤立地起作用。比如,常常是剝蝕作用還沒將蓋層完全揭去,構造運動所造成的裂隙就已使油、氣和大氣連通,或者較強的水動力就幫助油、氣沖破阻力向外流失了。
D. 石油的組成和性質
1.1.1 可燃性礦物
石油及其衍生產品含可燃氣體,都屬於可燃性礦物。最早引入「可燃性礦物」這個概念的是德國古植物學家波托涅(Г.Потонье)。這個詞的詞素包含「可燃的」「石頭」「生命」等意義,即有機來源的能夠燃燒的石頭。可燃性礦物是一種有機生物岩石,在岩石中佔有一定的位置(圖1.1)。有機岩石中也有不能夠燃燒的叫做非可燃性礦物,例如石灰岩。
圖1.1 可燃性礦物在岩石中所處的地位
可燃性礦物的分類介紹如下。
波托涅及古布金將可燃性礦物分為以下幾類:
1)瀝青質和石油系列的可燃性礦物——石油瀝青;
2)煤炭和腐殖質類可燃性礦物;
3)殘留有機岩。
屬於石油系列可燃性礦物的有各種性質的石油、可燃性碳氫化合物氣體、重質原油、瀝青、瀝青質、石蠟,以及分布於岩石中、溶化於中性有機液體中的物質(瀝青)。
可燃性煤炭系列是各種泥炭、褐色煤和石煤、硬煤等可燃性礦物。在其形成過程中,各種植物來源的物質起到了主要作用。
殘留有機質是植物來源的有機化合物——樹脂、固醇類、孢質、石蠟等。琥珀、磷瀝青屬於這一類礦物。
至今沒有形成適用於可燃性礦物的分類標准,多數是根據原始產品的成因、形成途徑、彼此間的相互轉化等制定的分類方法。
古布金把可燃性礦物分為兩個基本大類:瀝青和煤炭。其中瀝青這個類別沿用格菲爾(Г.Гефер)的觀點,包括了天然氣、石油以及硬瀝青。如地瀝青、地蠟等從成因上與石油有關的物質。
由於有古布金的研究成果,格菲爾的瀝青分類方法在俄羅斯得到了廣泛的應用。該方法以物質的物理特性為基礎。
(1)氣體
1)自然形成的,天然的;
2)石油的,伴生石油的。
(2)液態瀝青
1)石油;
2)煤焦油,樹脂,樹脂焦油等。
(3)硬瀝青
1)石蠟;
2)地瀝青;
3)瀝青。
(4)瀝青與其他物質的混合物
烏斯賓斯基(Успеинский)和拉德琴柯(Радченко)根據可燃性礦物形成條件編制的圖表是成因分類的實例(圖1.2)。
該圖由兩個分支構成:左側是煤炭類可燃性礦物(腐殖質),右側是石油類可燃性礦物(瀝青質)。每一個單類以板塊的形式表示,板塊端面是其形成期間的地球化學環境特徵。
該圖左側分支展示了形成煤炭類可燃性礦物原始物質的主要范疇,這些物質是高等植物和低等的動物有機體。
圖表的右側分支指的是石油類(瀝青類)可燃性礦物。煤炭板塊右側的箭頭指向的是海相和淡水相腐泥岩成因,展示的是石油類可燃性礦物和海水沉積物質的關系。該分支的右側板塊是石蠟類物質,是由含蠟石油風化形成的。
與這個分支相對的一側揭示的是石油芳香烴類重樹脂分支向瀝青類,繼而向瀝青、煤瀝青、碳瀝青等相應變質程度的轉變。
從圖中可以看出,可燃性礦物,不管是煤炭類還是石油類,其變質的終端產物相互靠近,這兩大類物質變質的最終產品是石墨,也就是物質總的炭化過程。
瓦索葉維奇(Вассоевич)和穆拉托夫(Муратов)根據碳在可燃性礦物組成中的作用,把兩個特徵作為把天然化合物合並為一組的分類基礎:① 化學組成中總的特性,必須含有碳,而且碳起主要作用;② 特殊的物質特性(有機化學研究的結果)。這些天然的物質見圖1.3。
圖1.2 可燃性礦物成因分類圖
對於天然的礦物煤和石油有相應的概念「天然焦」和「石油焦」。化石燃料由3大類礦物組成:煤、石油、可燃氣體。在這種圖表上把天然焦分為殼質煤、腐殖煤、腐泥岩。
卡林克(Калинко)把所有的可燃性燃料和天然有機物質(包括礦物煤)都稱作Naphtides,包括烴類氣體、凝析氣、石油、天然瀝青、天然氣水合物。萘基的概念是當代最通用的。
圖1.3 碳分類圖
1.1.2 石油化學組成特徵
石油是黏性油質液體,無色或者黑褐色,有時是黑色,是各種碳氫化合物的復合混合物。石油在黏稠度上有很大差異,有稀薄的,有黏稠的,也有樹脂狀的。
研究石油的化學成分與同位素組成對於研究石油的成因以及地殼中各種石油的轉化過程具有重要意義。石油是非常復雜的有機化合物,按化學成分來說,目前可以確定的有800種碳氫化合物。
對石油組成成分的研究最充分。石油主要是由碳(83%~87%)和氫(12%~14%)組成,比例關系是1.85個氫原子對1個碳原子。這個組分在碳氫化合物中是彼此相關的,化學成分和性質而各不相同。此外,氮和硫也是石油的組成成分,見表1.1。石油被相應地分為氧化原油、含氮原油和含硫原油。
表1.1 燃氣與石油的化學成分
1.1.2.1 石油中各元素的性質
(1)碳
碳是門捷列夫化學元素周期表中的第四類,原子序數是6,原子量是12.01。碳元素四價原子表示為:
俄羅斯東部地區及中國的油氣田
原子外層的4個空位決定了它以不同方式與其他不同原子結合形成復合分子的能力。碳原子這種形成復合分子的特性取決於它可以形成無數有機物的性質。
(2)氫
氫原子在碳氫化合物中的含量占第二位。氫元素是門捷列夫元素周期表中的第四類,原子序數是1。由於氫具有極強的還原性,除了稀有氣體元素和稀有金屬元素以外,它可以和幾乎所有的元素生成化合物。氫是宇宙中分布最廣的元素,它以等離子的形式構成太陽和星球質量的70%。
碳元素和氫元素在石油和天然氣中彼此相關構成碳氫化合物,因此經常利用碳、氫兩種元素的比值來確定它們的成分(表1.2)。
(3)氧
氧元素在石油中的含量很少能達到1%~2%,在可燃氣體中它基本是以CО2的形式存在,含量從幾乎為零到近乎純碳酸。
(4)硫
硫元素在石油中以自由狀態和化合狀態存在。化合狀態的硫或者以H2S的形式存在,或者進入高分子的有機化合物。硫元素在石油中的總含量有時可以達到7%~8%。硫元素在天然氣中通常是呈H2S的形式,其數量有時可達20%,甚至45%(據科茲洛夫對首爾-蘇氣田可燃氣的測定)。
(5)氮
氮在石油中的含量不超過1%,以自由狀態存在,含量波動很大:從濃度接近於零到幾乎是純凈的氮氣。在比較石油與其他可燃性礦物時通常利用的關系是C/(O+N+S)(表1.2)。
表1.2 可燃性礦物的元素組成
此外,還有維爾納茨基(В.И.Вернадский)確定了磷元素在石油中的存在。在天然氣中存在有很少量的氦元素(He含量為1%~2%,有時可達10%)、氬元素(Ar含量不超過1%,很少達到2%)、氖元素以及其他惰性氣體元素。
在石油中還可以發現很多濃度不高的元素(通常是沉積岩中的元素),例如Si,Al,Fe,Ca,Mg,往往還有 V,Ni,Cu,Sr,Ba,Mn,Cr,Co,B及一些其他元素。
1.1.2.2 同位素
除了研究各種元素在碳氫化合物中的分布以外,為了弄清石油的地球化學史,也非常重視對同位素成分的研究。
(1)碳元素同位素
碳元素有3個同位素12C,13C,14C。在天然化合物中,12C的克拉克值是98.89%,13C的克拉克值是1.108%。這兩個同位素非常穩定,在石油中12C與13C的數量比是91%~94%。同位素14C放射性很強,半衰期是5568±30 a,可以用來確定3萬年以下的各種木質出土文物的年齡。
不同種類的石油中,碳的同位素組成是不同的。低沸點餾分的特點是「輕型碳同位素組成」,沸騰溫度有時超過100 ℃,重度穩定碳同位素的含量隨著餾分干點的進一步升高而降低,但是高於450 ℃時13C/14C的值重新升高。
石油中碳元素總量的同位素組成決定著其他各組分碳同位素的組成以及相互之間的數量關系。對於確定石油的相關性來說,碳同位素組成比其他參數更加可靠。
穩定的重同位素13C的最高濃度出現在含碳的碳酸鹽和二氧化物中,最低濃度則出現在石油中。與碳酸鹽和內生岩中的碳相比,有機物及其衍生品(煤、石油、天然氣)實際上都富含輕同位素12C。
(2)氫元素同位素
氫元素有4個同位素:1H——氕(P),2H——氘(D)和人工合成的3H——氚(T),還有非常不穩定的4H。氚具有放射性,半衰期是12年。氫元素穩定同位素的分布是氕為99.9844,氘為0.0156。P/D的值在3895到4436間波動。
格林貝爾克(И.В.Гринберг)指出,伴生在石油和天然氣中的水含有很高的氘,是由於石油和水中的氫原子發生了同位素置換。
(3)硫元素同位素
硫元素有4個穩定的同位素:32S,33S,34S和36S,同位素豐度(%)(據 Ранкам的資料整理)32S為95.1,33S為0.74,34S為4.2,36S為0.016。32S/34S的值通常在22~22.5之間波動。只是可以根據年齡相同的沉積物質中硫的同位素組成大概地判斷石油品種的相近度及其不同年齡沉積物質的石油的差異性。此外,一些學者指出,相同層位的石油和瀝青通常有著相似的32S/34S值。
(4)氧元素同位素
氧元素有3個穩定同位素。在水中和空氣中的平均豐度(據 Ранкам資料整理)分別是(%)16О為99.760~99.759,17О為0.042~0.0374,18О為0.198~0.2039。通常研究 16О/18О的值用來確定古盆地的水溫。
氮元素有兩個穩定的同位素,平均豐度(據霍葉林克(Хоеринг)資料整理)是(%)14N為99.635,15N為0.365,14N/15N的值為273~277。霍葉林克和穆爾(Г.Мур)確定了含氮天然氣在經過砂岩富集的過程中氮同位素的分餾級別。
上述方法被廣泛地用於可燃性礦物的比較特性、對比與揭示其成因特徵方面。
1.1.2.3 石油及其衍生物中的碳氫化合物
碳元素和氫元素是碳氫化合物的基礎,碳氫化合物的分子結構和大小各異,因此其化學性質和物理性質也各不相同。在石油及其衍生物中有3個碳氫化合物的基本族類。
(1)鏈烷烴
鏈烷烴或者石蠟(甲烷烴)有著通用的分子式CnH2n+2,式中的n可以是從1到60的任意數,隨烴族分子量的增加而增加。這是完全飽和化合物。由戊烷C5H12、己烷 C6H14、庚烷C7H16、辛烷C8H18等組成,分為正辛烷(無支鏈)和異烷烴(有支鏈)。結構中無支鏈的鏈烷烴當n=1~4時呈現為氣體,化合物中n=5~16時是液體,當n>16時是固體。無支鏈的鏈烷烴被稱作正鏈烷烴或者n鏈烷烴(例如CH3—CH2—CH2—CH3)。它們構成同類系列,在分子鏈上每一項都比前一項相差一個碳原子和兩個氫原子。在石油中n鏈烷烴數量被限制,通常低於60,多數情況是從C1到C40,構成石油的 15%~20%。
除了無支鏈的鏈烷烴還有有支鏈的鏈烷烴。例如,有兩個碳原子時(異構烷烴、異鏈烷烴),
俄羅斯東部地區及中國的油氣田
這些同分異構體的組合數量實際上是可以超過百萬的。
上述石油甲烷烴基本是標准形式,比異構化合物相對穩定,因此可以在石油中呈現。
每一種同分異構體都有自己的物理性質和化學性質。因為石油中鏈烷烴和其他種類碳氫化合物的同分異構體呈現出不同的比例關系,所以不同礦床的石油都有自己特有的性質和組成。
一般情況下,石油由二三十種標準的和同分異構體的碳氫化合物組成,其他的則是以微量的形式存在。
(2)環烷烴
環烷CnH2n是含有封閉環狀結構碳原子的碳氫化合物。環烷的環狀結構含有5個或6個碳原子,即環戊烷和環己烷。
俄羅斯東部地區及中國的油氣田
幾乎50%的石油是由環烷碳氫化合物構成的。環戊烷和環己烷結構中的氫原子可能被烴基甲基(CH3)、乙基(C2H5)等取代。這種情況下就得到衍生物(甲基環戊烷、甲基環己烷等),它們構成近2%的石油。
環烷和鏈烷烴一樣被稱作飽和碳氫化合物,因為它們烴鏈中的碳原子是飽和的。
(3)芳烴
芳烴(芳香烴)Cn H2n-6——環狀烴,有1個到4個或者5個芳香環,每個芳香環由6個碳原子和少量的短鏈組成。最普通的代表是苯C6H6,由6組CH組成:
俄羅斯東部地區及中國的油氣田
分離出單周期的芳香烴———本系列裡的單芳烴,二環的 Cn H2n-12 (兩個環),萘系列,以及烴系列,在分子Cn H2n-p中含有3個、4 個或更多的環,其中p隨著環的數量變化而改變。
每一組CH中的氧原子都可以由甲基和其他自由基代替。這樣就構成一系列的碳氫化合物,其中苯環與一個或者幾個直鏈或者支鏈的烴基結合。
石油中芳烴的含量很少超過15%,而且集中在石油的重餾分中。與易溶的烷烴和環烴相比,芳烴非常穩定,具有飽和的特點,主要特徵是置換反應,而不是化合反應。
石油中含有混合的環烴-芳香烴化合物,在石油組分的顯著性上與芳烴一起位居第二。含量占餾分物質(沸點高於210 ℃)的比重在20%~45%之間波動。
此外,在石油中還可以發現開鏈烯烴,通式為CnH2n-2。由於它們具有一個雙鍵,因此可以進行化合反應和聚合反應。屬於這一類型的有乙烯(C2H4)、丙烯(C3H6)、丁烯(C4H8)等。與幾個雙鍵化合物化合叫做聚烯烴。
石油中不存在烯烴,它們存在於石油化工產品中。
1.1.2.4 石油中非碳組分
硫氧氮化合物是石油中的非碳組分,分子式含有氮、硫、氧。在石油中的含量差異巨大:硫佔0.01%~1%(在含硫石油和高含硫石油中達8%),氮佔0.04%~0.6%(在純石油中達1.7%),氧佔0.2%~7%。隨著烴類分子質量的增長,異質原子化合物的含量也在增長,因此異質化合物在輕質原油中很少,而在重質原油中則很多。
1.1.2.5 石油的相似組分
樹脂物質、瀝青烯是石油中一組異質有機高分子化合物,即樹脂-瀝青物質。它們由碳、氫、氧及幾乎一貫存在的硫、氮和金屬組成。樹脂中包括少量的自由酸和樹脂醚,而瀝青烯中含有大量的芳香化合物。含油岩石瀝青中的樹脂和瀝青烯接近石油的相應組分,但不相同。樹脂和瀝青烯在石油中的含量在0到40%之間擺動,取決於石油的成因類型和熱成熟度。
這樣,石油的組分是烷烴和環烴——飽和烴,而芳烴、樹脂和瀝青是不飽和烴。
1.1.2.6 石油分類
石油分為以下幾種類型:石蠟(烷烴)和環烴,如果飽和烴的總含量超過50%。石油含有超過40%的烷烴和環烷烴,這些界限就區分出石蠟石油和混合石蠟-環烴和環烴石油。如果飽和烴的總含量低於50%,而芳香化合物、樹脂和瀝青的總量高於50%,這一類石油就屬於芳香類。在實踐中這一級別分為兩個小類:環烴含量低於25%的芳香-瀝青石油和環烴含量高於25%的芳香-環烴石油。
彼得羅夫以重要殘留烴——標准類異戊二烯結構的烷烴分配時氣液相色譜數據的排列為基礎,制定石油化學標准將石油分為4種基本類型:А1,А2和Б1,Б2。
А1型石油屬於甲烷類石油,在自然界中分布最廣,俄羅斯各大油氣田都有。屬於高產工業石油,主要礦床有羅曼什金諾、薩摩特洛爾。
А2型石油按組分是環烴-石蠟型和石蠟-環烴類。烷烴含量在25%~40%之間。特點是含有1%~6%的異戊二烯型烷烴,而正常的異戊二烯型烷烴含量是0.5%~5%。這種類型石油產於裏海南部(蘇拉汗)、西西伯利亞(薩莫特洛爾、索列寧斯克)、近裏海(卡拉-丘貝)等地。含有這類石油的底部地層很少,基本是在新生代沉積層中;中生代1500~2000 m深處的沉積層中也有少量存在。
Б1型石油按照族的組成屬於環烴型或者環烴-芳香烴基類。特點是不含標准型烷烴和異戊二烯烷烴,含有少量的支鏈型烷烴(4%~10%)。這一類型的石油往往賦存在新生代沉積層500~1000 m的深處。裏海南部和西伯利亞的北部、南部蘊藏的石油屬於這一類型。
Б2型石油的成分是石蠟環烴和環烴,特點是環烷烴含量高,可達60%~75%。藏量比А2型的石油豐富,主要產在新生代1000~1500 m深處的沉積層中。產地主要在喬治亞、北高加索(斯塔羅格羅茲涅斯克、阿納斯塔西葉夫斯克-特羅伊茨克)。
表1.3 天然瀝青分類
卡靈科認為,屬於環烴的還有天然瀝青——天然有機化合物的一個大類,和石油構成一個連續系列,從中可以看出物質從稀薄、黏稠到固態的過渡。根據天然瀝青的油質含量及某些物理性質,將其進行分類(表1.3)。
烏斯賓斯基(Успенский)和穆拉托夫(Муратов)給天然瀝青分類增加了酸瀝青、彈性瀝青和高氮瀝青。酸瀝青是地瀝青風化的產物,彈性瀝青是脂族烴類物質的一個特殊變種,高氮瀝青是利用現代細菌加工技術對石蠟烴進行加工得到的產物,詳見表1.4。
表1.4 天然瀝青的分類
天然瀝青分布廣泛。在每一個產油區都有埋藏瀝青的地層,主要存在於含油層之間,而且在每一個凝析氣層都有。巴基羅夫(Бакиров,1993)指出,從全球范圍來看,天然瀝青與普通石油的儲藏總量大致相同,天然瀝青儲量有可能會超過石油儲量。
1.1.3 石油的物理性質和物化性質
研究石油的性質和組成可以運用各種物理方法、化學方法和物化方法。物理方法用來確定密度、黏稠度、凝固點及石油的含水量。化學方法用來研究催化過程、異構過程等。物化方法採用氣液色譜法、質譜分析法等。
1.1.3.1 密度
密度是描述石油和石油製品的一個重要性質。密度的絕對值取決於樹脂-瀝青組分的含量、石油的化學成分、溶解氣體的含量等。不同種類的石油密度不同,處於0.77~1 g/cm3之間。
1.1.3.2 黏度和流度
黏度和流度是液體受力影響彼此間的摩擦阻力。石油中芳烴和環烴含量越高,黏度就越高。石油的黏度隨著其中輕餾分和溶解氣體含量的增加而升高。在正常壓力下,溫度升高,石油的黏度會降低,而氣體的黏度會升高。
石油的絕對黏度單位是泊,泊值為
俄羅斯東部地區及中國的油氣田
在研究石油時,通常需要確定的不是其絕對值,而是運動黏度(ν),相當於石油的絕對黏度除以其密度(ρ),即ν=η/ρ。
流度是相對黏度的倒數。
1.1.3.3 張力面
張力面是液體對抗自身表面擴張的力。其單位是達因(dyn),引算的是表層密度單位、壓力表層單位。
因為壓力表層是在各種介質交界處測量所得出的數據,其大小與空氣和水有關。相對於空氣來說,各個礦床所產石油的數值也不盡相同,從25.8~31.0 dyn/cm2,相對於水來說,是17.3~27.8 dyn/cm2。
1.1.3.4 沸點
沸點取決於烴的成分:烴類分子組成中碳原子的數量越多,烴的沸點就越高。烴的沸點見表1.5。
表1.5 烴類的沸點(℃)
從表1.6可以看出,前5個烴族在一般的大氣條件下處於氣態。研究沸點溫度用於分餾石油。根據沸點分離出下列餾分:
1)原油~60 ℃;
2)汽油~200 ℃;
3)煤油~300 ℃;
4)氣體~300-400 ℃;
5)潤滑油>400 ℃;
6)地瀝青>500 ℃。
1.1.3.5 燃燒值
燃燒值指1 kg石油完全燃燒時釋放出的卡路里數量。其中,完全燃燒是指產生出二氧化碳和水。表1.6列出了一些礦床的石油燃燒值。
表1.6 石油的密度及燃燒值
1.1.3.6 顏色
石油的顏色非常豐富:有無色(產自蘇拉哈內油田上新世中期上部地層)、淺黃色(產自馬爾科夫斯基油田的寒武紀地層)、黃色(艾木貝的侏羅紀沉積層)、黑褐色(羅麻什金斯克油田的泥盆紀沉積層)及接近黑色(古謝夫斯基油田的奧陶紀沉積層),還有的在日光下呈現淺綠色(格羅茲寧斯克),也有的呈現淺藍色(巴京斯克)。
1.1.3.7 光澤
各種因素導致的冷發光,分為熒光和磷光。熒光是物質在受激發停止不超過10-7秒的時間內直接發出的光。如果發光持續時間較長就是通常所說的磷光。在紫外光照射下輕質原油發出強烈的藍色光,重質原油發黃褐色和褐色光。為了比較不同種類石油發光的顏色和亮度,往往採用質量發光分析法。
1.1.3.8 旋光性
指當偏光通過石油時能使偏光面的位置產生小角度偏轉的特性。石油一般多為右旋,少數為左旋。旋轉的角度從幾度到零度不等。光旋轉的大小隨著石油年齡的減小而減小。
1.1.3.9 導電性
石油及石油製品是電介質,不能導電。
1.1.3.10 分子量
表1.7 石油餾分分子量
石油的分子量是它的餾分分子量的算術平均數,從240到290不等。最重的石油餾分是樹脂和瀝青,分子量是700~2000。表1.7列舉了各種石油餾分的分子量。
1.1.3.11 熱擴散系數
石油具有在加熱條件下膨脹的性質,與其組成成分有關。在自然條件下,石油並不總是完全被天然氣充填。石油分解出所含天然氣時受到的壓力(常溫條件下)叫做飽和壓力。
1.1.3.12 逆行溶解
指石油融化在天然氣中。液態的碳氫化合物在壓力增加的條件下能夠溶解在天然氣中,轉化為氣態,形成天然氣凝析混合氣(礦床)。極少情況下石油溶解在甲烷中。極限碳氫化合物充盈進甲烷時,其溶解能力增強。隨著碳氫化合物分子量的增大石油的溶解力下降。最不易溶解的是樹脂和瀝青。
1.1.3.13 石油的氣體飽和度
它決定著石油礦床中天然氣的含量,用m3表示。溶解在石油中的天然氣數量取決於石油和天然氣的成分以及溫度與壓力。根據薩維那婭(Cавиная)和維利霍夫斯基(Велиховский)的資料,在同樣條件下,液態碳氫化合物的分子中如果含有相同數量的碳原子,最易溶解烴氣的是烷烴,其次是環烷烴,最難溶解的是芳香烴。
1.1.3.14 石油的地球化學演變
地下石油的組成和性質具有強烈的多變性,這取決於一系列的因素:① 組成石油的有機物退化的成分和程度;② 聚集過程的特點;③ 地下石油的賦存條件(溫度和壓力),也就是地質因素(埋藏層深度、石油年齡、水文地質條件、圍岩沉積岩石學)。
眾所周知,石油的組成和性質與其年齡無關,而是取決於圍岩礦層的深度(Бакиров,1993)。早在1934年,美國科學家巴爾托(Бартон)就指出,很多油田的輕質烷烴石油埋藏於比較深的古老儲油層中。隨著深度的增加,石油的密度和黏稠度在減小,成分中碳氫化合物的濃度在升高,熱動力條件更加穩定,烷烴和環烷烴的含量升高,芳香烴的含量明顯降低。正如多林諾(Долинко,1990)所指出的:同一岩層的油層,如果埋藏深度不同,那麼環烷總量中環戊烷的數量隨著岩層溫度的升高而減少,同時環烷的總量也在減少。同樣隨埋藏深度發生變化的還有相同年齡中n-乙烷的含量(參見表1.8)。
表1.8 相同年齡的石油中n-乙烷含量與埋藏深度的關系
卡爾采夫(Карцев,1978)以大量礦床為例,指出剖面底部石油的密度在減小,輕質餾分的逃逸在增加,樹脂和硫的數量在減少。總的來說,石油年齡越古老,其中的輕質餾分就越多。的確應該考慮礦床的構造狀況:地台的古老沉積層的石油埋藏越淺,年輕的地向斜區域越廣,因為沒有經歷高溫高壓的作用。
石油的熱動力轉化是在高溫高壓下進行的。由於溫度和壓力的影響,石油的深度變質在地球內部的深處進行,輕餾分的穩定化合物不斷聚集和豐富。烷基碳氫化合物中最穩定的是甲烷;液態和固態的碳氫化合物中是芳香烴(苯、萘)和混合稠環烴。因此,在大約200 ℃的條件下,大多積聚的是甲烷和稠環烴。
最後,石油的熱動力轉化導致碳氫化合物的石蠟化以及環烷烴的被破壞,這個過程一直持續到石油消失,只殘留著甲烷和固態的碳氫化合物。自然界中的所有石油都經歷過這個過程。
石油的氧化有兩條途徑:① 自由氧條件下的多氧氧化;② 有氧化合物條件下的乏氧氧化(Бакиров,1993)。
多氧氧化發生在近地表的礦層,石油與各種富氧水的接觸帶,也就是表生作用帶。表生作用帶的厚度和表生變質的程度不固定,取決於礦層的深度和石油積聚的范圍、地質及水文地質特性,以及一系列其他因素。
乏氧氧化是在含有氧及細菌的化合物作用下發生的。含有細菌的化合物是使碳氫化合物組分氧化的石油。在這種情況下,石油的氧化只發生在局部,因為細菌只能在80 ℃~90 ℃的溫度條件下存在,出現在礦化度不超過200 g/L的層間水中。實際上,甲烷在乏氧條件下沒有經歷氧化。
石油的微生物轉化發生在有來自於表層的滲透水穿透的礦層,這些滲透水可以攜帶氧和微生物機體,它們利用氧以及在物質交換中吸收某種碳氫化合物。
在無氧條件下,某些細菌為了保證自己的需要恢復為硫酸物,往往生成單體硫。有時在鹽洞存在著單體硫,這種鹽洞是生物退化形成的原油。
礦層中石油成分形成的一個因素是其在聚集過程中的物理分餾作用(Бакиров,1993)。
在橫向運移的過程中,石油變得更加緻密黏稠,其中的環烷含量增高,而在汽油餾分中的石蠟烴含量減少。
在石油的垂直運移過程中,尤其是處於射流狀的情況下,在沿著通向地球表面的裂隙里密度也可能加大。如果從最底部的油層往上運移過程中發生局部溢流,石油的密度就會降低,同時在運移過程中石油不僅可能失去碳氫化合物餾分,而且非碳氫化合物的組分也會散失,這取決於岩石的吸附作用。石油的芳香烴可能會失去其原始質量的48%~53%,石蠟烴被岩石吸附的數量不超過20%~30%。
石油分異時在礦層內部密度往往隨著深度增加而加大。
可以證實的是,石油的組成、特性及其演化程度取決於下列因素:① 有機物質原始組成的特性;② 油田的地質構造特點;③ 熱動力及表生變化;④ 運移過程。
E. 天然油氣庫有哪幾類
集中儲油的地方叫做「儲油構造」,它由三部分組成:一是有油氣居住的空間,叫「儲集層」;二是覆蓋在儲集層上面的即不透油、不透水、不透氣的岩石層,叫「蓋層」,它就像一層「天然大被子」,有效地防止了油氣的繼續外流;三是油氣藏四周的封堵條件(圖15)。
圖15生、儲、蓋層配位關系由於沉積環境不同及後來受到的構造運動影響的不同,使得地下能夠儲存油氣的各個天然倉庫從內部結構到外部形態都不相同。再加上形成油氣的原始母質不同,油氣生成後的運移、保存條件不同,在各個天然油氣庫中儲存的油氣的性質也不完全相同。所以,世界各地的油氣藏都是各自不相同的。
能夠儲存油氣的地下倉庫叫做「圈閉」,地質學家根據圈閉形成的原因,把油氣藏分為了以下幾大類。
構造油氣藏構造運動使具有滲透能力的地層發生了褶皺、斷裂等形變,從而形成了圈閉條件的油氣藏。這種圈閉易於發現,它的研究歷史最長,是目前已發現的油氣藏中的主要類型。世界上許多油氣藏就屬於這一類。如背斜油氣藏,它是由於構造運動使儲油層、蓋層和底層向上隆起,形成了圈閉油氣的條件。這種油氣藏是所有各種油氣藏中最常見的,因而也最有代表性,也是油氣勘探中首選的目標(圖16)。
圖16背斜油氣藏典型的背斜油氣藏像一個倒扣著的大鍋。這個「鍋」的表殼就是蓋層,向下的面是底層。蓋層和底層阻止了油氣向垂直於儲油層的方向運移。隆起則在儲層中形成了一個液流停滯區,既有利於油、氣、水在內部發生重力分異和聚集,也使聚集起來的油氣可以在其中保存。充滿在儲層中的水從下面將油、氣托住,封存在隆起的儲集層中。
還有一種構造油氣藏是斷層油氣藏,它是地殼發生褶皺或伸張運動時,地層的某一部分受力過大發生斷裂,地層斷裂以後,裂開的部分如果發生相對錯動,就形成斷層。斷裂的部分之間如果未被不滲透的物質充填、堵死,就可以成為油、氣運移的通道。如果被封死了,斷層就可以形成一個遮擋面。在適當的條件下,這種遮擋面與蓋層、底層相結合,就可以形成斷層圈閉油氣藏(圖17)。
圖17斷層圈閉油氣藏屬於構造圈閉的油氣藏種類最多,以上只是兩個較為典型的例子。
地層油氣藏主要由經過沉積間斷以後就沉積的不滲透地層作為遮擋面而形成的油氣藏。這類油氣藏的圈閉條件實際上是由沉積成岩作用和構造運動相結合形成的。
在幾百萬甚至上千萬年之間若沒有岩石沉積的現象,叫做沉積間斷。沉積間斷之後又發生了新的沉積,這種新舊地層之間的接觸面叫「不整合面」(圖18)。不整合面的作用與斷層的作用十分相似,既有助於油氣的運移,又有助於起到遮擋作用,形成地層油氣藏。地層油氣藏屬於比較復雜的油氣藏。
圖18不整合現象1—平行不整合;2—角度不整合岩性油氣藏這是由於儲集層本身和岩石性質或物理性質變化而造成的儲油氣圈閉。在同一時代的海洋或湖泊中的沉積物質可能會大不相同,在深水處形成的是泥岩,在淺水處則可能是砂岩甚至礫岩;或者是同一種岩層,因為沉積環境不完全相同,而造成物理性質不同。比如都是砂岩,而且同處一層,但可能有的地方滲透性較好而有些地方滲透性又較差。這種現象叫做「岩性變化」或「相變」。在儲油層中,岩石物理性質的變化在一定條件下也能形成圈團油氣的條件。常見的有岩性尖滅油氣藏、透鏡狀油氣藏,等等(圖19)。現代化的高精度地震勘探可以識別這類油氣藏。
圖19岩性尖滅油藏古潛山式油氣藏在古代突顯於地表的高大山體,經歷千萬年的風吹雨淋,產生了數不清的縫縫洞洞,後來地殼下沉,它們又被深埋於地下,如果附近有適當的生油岩,它們就像是一塊塊吸收油氣的「大海綿」,形成古潛山式油氣藏。我國的渤海灣地區和任丘油田就有許多這類油氣藏。
F. 石油的類型及性質是什麼
石油的性質:
具有代表性的大慶石油屬低硫石蠟基石油,已開采酌石油以低硫石蠟基居多。這種石油,硫含量低,含蠟量高,凝點高,能生產出優質的煤油、柴油、溶劑油、潤滑油及商品石蠟,直餾汽油的感鉛性好。
有的石油硫含量高,膠質含量高,屬含硫石蠟基。其直餾汽油餾分產率高,感鉛性也好。柴油餾分的十六烷值高,閃點高,硫含量高,酸度大,經精製後可生產輕柴油與專用柴油。潤滑油餾分中,有一部分組分的粘度指數在90以上,是生產內燃機油的良好的原料。
有的石油硫含量低,含蠟量較高,屬低硫環烷一中間基。其汽油餾分感鉛性好,且也富含環烷烴與芳香烴,故也是催化重整的良好原料。柴油餾分的凝點及硫含量均較低,酸度較大,產品需鹼洗。減壓渣油經氧化後可生產石油建築瀝青。
另有些低凝石油硫含量低、含蠟量也低,屬低硫中間基。適於生產一些特殊性能的低凝產品,同時還可提取環烷酸是不可多得的寶貴資源。
石油的分類方法主要有以下幾種。
1、工業分類法
2、商品分類法
3、化學分類法
溫馨提示:以上內容,僅供參考。
應答時間:2021-07-09,最新業務變化請以平安銀行官網公布為准。
[平安銀行我知道]想要知道更多?快來看「平安銀行我知道」吧~
https://b.pingan.com.cn/paim/iknow/index.html
G. 如何對油品進行儲存
油庫是用來儲存、接收、發放和輸轉油品的倉庫。根據油庫的總容量,通常將油庫劃分為四個等級,見表8-1。選擇庫址及工藝設計時,油庫容量是採取不同技術標准和安全措施的依據。
為了便於管理,油庫區一般可劃分為儲油區、裝卸油作業區、輔助生產區、行政管理區
序號名稱圖 例序號名稱圖 例1閘閥13電動離心泵2截止閥14管道泵3止回閥15電動往復泵4球閥16蒸汽往復泵5蝶閥17齒輪泵6旋塞閥18螺桿泵7電動閥19真空泵8安全閥20立式油罐9電磁閥21卧式油罐10過濾器22鶴管11流量計23膠管12消氣器24卸油臂(快速接頭)
H. 各位高手幫我列出各種原油的特性嗎小弟不勝感激並追加高分!
石油也稱原油或黑色金子,是一種粘稠的、深褐色(有時有點綠色的)液體。地殼上層部分地區有石油儲存。它由不同的碳氫化合物混合組成,其主要組成成分是烷烴,此外石油中還含硫、氧、氮、磷、釩等元素。不過不同油田的石油成分和外貌可以有很大差別。石油主要被用來作為燃油和汽油,燃料油和汽油組成目前世界上最重要的一次能源之一。石油也是許多化學工業產品——如溶劑、化肥、殺蟲劑和塑料等的原料。 當今88%開採的石油被用作燃料,其它的12%作為化工業的原料。
原油中碳元素佔83%一87%,氫元素佔11%一14%,其它部分則是硫、氮、氧及金屬等雜質。
比如尼羅原油油啊,吉拉索原油:
這個可以上http://www.feioil.com/index.php?_m=mod_proct&_a=prdlist&cap_id=92
接下要介紹一下論文:找了半天給你找到的
蘇丹尼羅原油特性及其流動改進機理研究
英文標題 Study on Properties and Flowability Improving Mechanism for Sudan Crude Oil
作者 付先惠
專業與研究方向 油氣儲運工程 油氣集輸工藝理論與技術
指導教師 敬加強
申請學位等級 碩士
機構 西南石油大學
論文完成年度 2008
中圖分類號 TE81
中文關鍵詞 蘇丹原油;流動改進;稀釋;流變性;粘彈性;析蠟;屈服時間
英文關鍵詞 Sudan crude oil;flowability improving; dilution;rheological properties;viscoelasticity;wax crystallization;yield time
中文摘要 易凝高粘原油在較高溫度下存在明顯的粘度異常,其輸送能耗高、停輸再啟動困難,為確保其經濟安全輸送,有必要加強易凝高粘原油流動改進機理及其應用技術研究。為此,針對蘇丹(SD)3/7區原油易凝高粘、且對國內降凝劑普遍感受性差的特點,採用流變學測試和影像分析技術,測試和分析SD原油的流變性、屈服特性和粘彈性及其主要影響因素,建立SD原油流變性與蠟晶微觀結構的內在關系;結合SD原油的組成及模擬油特性,剖析SD原油易凝高粘的根源;對比分析SD原油在加降凝劑、稀釋劑以及同時加稀釋劑與降凝劑前後的凝點、流變特性、粘溫特性、粘彈特性及微觀蠟晶結構的變化,揭示蠟晶濃度(或蠟晶分子間作用力)對流動改進所起到的決定性作用,探討SD原油的流動改進機理。
研究表明:蘇丹原油高蠟和高瀝青膠質,以及較多高碳蠟是導致其高凝高粘的根本原因,而原油中金屬元素鎳、釩、鐵、鈉含量較高對高粘度也有一定的貢獻作用。SD原油析蠟點為94℃,析蠟高峰為50~30℃,異常點為40℃;其蠟晶顆粒細小、對稱性差,所以具有較大的比表面能,容易形成聯生、聯鎖結構;損耗角 曲線與儲能模量 曲線或損耗模量 曲線的交點所對應的溫度與原油凝點或傾點溫度非常接近,大約在39℃左右;也就是說,含蠟原油粘彈特性曲線的交點可以表徵其流動性;原油宏觀流變參數與微觀結構參數密切相關,原油析蠟過程及蠟晶微觀結構分析有助於詮釋易凝高粘原油多重流變特性的本質;膠凝含蠟原油的屈服時間隨剪切速率的降低而單調增加,二者顯然存在冪函數關系,可用關系式 描述;當SD原油加柴油(D)稀釋處理時,稀釋比越高,蠟晶顆粒的偏心度也越大,亦即蠟晶對稱性越好,分子間作用力越小,蠟晶顆粒越不易形成結構,宏觀表現為異常點、凝點及表觀粘度等流變參數下降的幅度越大,流動性越好。當稀釋SD原油加常規流動改進劑(PPD)時,只有在稀釋比大於等於30%D的情況下,PPD才表現出一定的流動改進效果,且隨著稀釋比增加,流動改進效果越好,這充分說明只有當蠟晶顆粒濃度降低到一定程度時,PPD的長鏈烷基才能嵌入蠟晶顆粒之間,使它們不斷聚集長大,與此同時PPD的極性部分將使蠟晶聚集體相互排斥,二者協同作用的結果將抑制蠟晶網狀結構的形成。因此,本課題研究為易凝高粘原油的安全經濟輸送技術發展奠定了理論基礎。
英文摘要 In our country, most of the crude oil is waxy and high viscosity, which is high energy consumption of transportation and difficult to restart after shutdown because of a clear viscosity abnormity under the high temperature. It is necessary to strengthen the study on properties and flowability improving mechanism and it』s application of the crude oil which is waxy and high viscosity to ensuring the economy and safety of transportation. Therefore, we take the study of 3/7 section of Sudan crude oil which is waxy and high viscosity, we study the basic specialities systematically, rheological properties, viscoelastic character, and the wax crystallization process of Sudan crude oil. In view of the waxy and high viscosity and the characteristic of insensitive to the freeze point depressant domestic generally, which is the characteristic of Sudan crude oil, the rheological test and microstructure analysis methods were adopted to study the rheological properties, yield characteristic, viscoelastic characteristic, and its major affecting factors of Sudan crude oil, the interconnection relationship between the rheological properties were founded, and the reason of waxy and high viscosity of Sudan crude oil radically were explained with combination of wax microstructure and the components of Sudan crude oil and stimulate oil characteristic to; the change of solidifying point, rheological properties, viscoelastic characteristic and the wax structure were contrasted and analysed while adding compound fore-and-aft of Sudan crude oil, adding the freeze point depressant directly, adding thinner, adding thinner and the freeze point depressant at the same time for Sudan crude oil, and then the determine effect of wax thickness (or intermolecular interaction of wax) on recing pour point–viscosity was opened out; and the flowability improving mechanism of Sudan crude oil was probed into.
The study indicated the radical reason that high solidifying point and high viscosity of Sudan crude oil was caused of the high content of wax, asphaltene, colloid, and high carbon wax, and the high content of tantalum including vanadium, iron, natrium and nickel in the crude oil, which could have a stated contribute effect on high viscosity of Sudan crude oil; The wax appearance temperature is 94℃, the flood tide of wax appearance temperature was 50~30℃, the abnormity temperature was 40℃; it』s wax crystal was small in size and bad in symmetry, so the surface energy is huge enough to form the fabric of interlock; The intersection point temperature of curve and curve or curve was very close to freezing point or pour point of crude oil, approximately at 39℃; that is to say, the intersection point of viscoelastic characteristic curve can characterize it』s flowability of waxy crude oil. The macroscopic rheological parameters and microstructure parameters were closely related, it is helpful to explain the essence of multiple rheological properties through the analysis of which the wax evolution process and microstructure of the crude oil which is waxy and high viscosity; the yield time of gelled waxy crude oil monotone increases along with the decreasing of rate of shear (the time of stress effect prolonged), there was power function relationship between them, it can be expressed with ; when adding diesel oil (D) to Sudan crude oil, dilute proportion bigger the eccentricity degree of paraffin particles were bigger too, that was to say the symmetry of wax crystal was better, the wax crystal form fabric more hardly when the intermolecular interaction was smaller; in the light of macroscopica, the fall extent of the abnormity temperature, solidifying point and viscosity could be larger along with the accretion of dilute proportion, as a result, it』s rheological properties could be improved. It had some flowability improving efficiency after adding flow improver in diluted Sudan crude oil with the dilute proportion big or equal of 30%D, and the dilute proportion more, the effect better; It spoke volumes for that the long chain alkyl of PPD would embed in when the concentration of paraffin paticles declined to some degree, and let them aggregation and growth continuously, meanwhile, the polar portion of PPD would make wax aggregates mutual exclusiveness, the result of the synergistic effect of them could inhibit the waxy crystal to form reticular structure. Therefore, the topic』s study laid a foundation of which is the development of transportation with safety and economy technique for the waxy and high viscosity crude oil.
I. 海上油田跟陸上油田在儲層性質上有什麼不同
這個跟陸地和海上沒什麼區別,這個儲層性質你得看你這個盆地發育的沉積岩類型。唯一的區別就是海上開採石油成本很高,單井產量太低了是沒有工業開采價值的。
J. 油氣的儲存及天然氣的液化應用是什麼
一、儲油庫
用於接收、儲存、中轉和發放原油或石油產品的企業和生產管理單位就是儲油庫。它是維系原油及其產品生產、加工、銷售的紐帶,是調節油品供求平衡的杠桿,又是國家石油及其產品供應和儲備的基地,對於保障國家能源安全、保障人民生活、促進國民經濟發展起著非常重要的作用。
(一)儲油庫的分類及作用
1.儲油庫的分類
(1)按管理體制和業務性質不同,可將儲油庫分為如圖7-23所示的獨立油庫和企業附屬油庫兩類。獨立油庫是專門從事接收、儲存和發放油品作業的獨立自主經營核算的企業和生產管理單位。企業附屬油庫是各企業為了滿足本部門生產、經營需要而設置的油庫,如油田的原油庫(首站)等。
圖7-34膨脹法製冷工藝流程
1,2—換熱器;3—節流閥;4—儲罐;5—壓縮機;6—渦輪膨脹機