① 面部識別的原理是什麼
面部識別軟體可歸入名為生物識別的一大類技術。生物識別技術使用生物信息來驗證身份。生物識別背後的理論是:我們的身體包含一些獨一無二的特徵,可以使用它們將我們與他人區分開。除了面部識別之外,生物識別身份驗證方法還包括:
指紋掃描
視網膜掃描
語音識別
面部識別方法有多種,但是通常涉及捕獲、分析和對比等一系列步驟,將你的面孔與資料庫中存儲的圖像進行對比。以下是FaceIt 系統用於捕獲和對比圖像的基本過程:
為了確定某人的身份,面部識別軟體將新近捕獲的圖像與資料庫中存儲的圖像進行對比。
檢測——當系統連接到視頻監視系統後,識別軟體會在攝影機的視野中搜尋面部信息。如果在視野中存在一張面孔,它會在幾分之一秒的時間內檢測到它。它使用多尺度演算法以低解析度搜索麵部圖像。(演算法是提供一組指令以完成特定任務的一個程序)。系統只有在檢測到類似頭部的形狀後,才切換到高解析度搜索。
對齊——一旦檢測到面部圖像,系統會確定頭部的位置、大小和姿態。只有在面部與攝像機至少成35度角的情況下,系統才會記錄它。
標准化——頭部圖像經過縮放和旋轉,以便能記錄和映射到相應的大小和姿態。無論頭部的位置如何以及相距攝像機的距離有多遠,都可以執行標准化過程。光線不會對標准化過程產生影響。
表示——系統將面部數據轉換成一個唯一的代碼。通過編碼,可以更加容易地將新近捕獲的面部數據與存儲的面部數據進行比較。
匹配——將新捕獲的面部數據與存儲的數據進行對比,並(在理想情況下)鏈接到至少一個已存儲的面部圖像。
FaceIt面部識別系統的核心是局部特徵分析(LFA)演算法。這是系統在對面孔進行編碼時使用的數學技術。系統對面孔進行測量,並生成一個面紋,即面部的唯一數字代碼。在存儲了面紋之後,系統會將它與資料庫中存儲的成千或成百萬的面紋數據進行對比。每個面紋都存儲為一個84位元組的文件。
面部識別系統通過使用面部識別軟體,警察可以縮放攝像機畫面並拍攝某個面孔。
系統可以用每分鍾6000萬張面孔的速度對內存中的面紋數據進行匹配,對於硬碟中的面紋數據,每分鍾可以匹配1500萬張面孔。在進行對比時,系統會用介於1到10之間的一個值來表示對比結果。如果該值大於預先定義的閾值,則宣布找到一個匹配結果。然後,操作人員可以查看被宣布為匹配項的兩張照片,確定計算機的工作是否准確。
與其他生物識別技術一樣,面部識別被認為是一種會在不遠的將來得到廣泛使用的技術。在下一節中,我們將介紹它現在的使用情況。FaceIt這樣的面部識別軟體的主要用戶一直是一些執法機構,它們使用這些系統在擁擠的人群中捕獲隨機出現的面孔。然後,將這些面孔與資料庫中犯罪分子的照片進行對比。
除了進行執法和安全監視之外,面部識別軟體還有其他幾個用途,包括:
消除投票欺詐
取款身份驗證
計算機安全
② 什麼是人臉識別技術
人臉識別技術是指利用分析比較的計算機技術識別人臉。人臉識別是一項熱門的計算機技術研究領域,其中包括人臉追蹤偵測,自動調整影像放大,夜間紅外偵測,自動調整曝光強度等技術。
人臉識別是指能夠識別或驗證圖像或視頻中的主體的身份的技術。首個人臉識別演算法誕生於七十年代初 [1,2]。自那以後,它們的准確度已經大幅提升,現在相比於指紋或虹膜識別 [3] 等傳統上被認為更加穩健的生物識別方法,人們往往更偏愛人臉識別。
讓人臉識別比其它生物識別方法更受歡迎的一大不同之處是人臉識別本質上是非侵入性的。比如,指紋識別需要用戶將手指按在感測器上,虹膜識別需要用戶與相機靠得很近,語音識別則需要用戶大聲說話。
相對而言,現代人臉識別系統僅需要用戶處於相機的視野內(假設他們與相機的距離也合理)。這使得人臉識別成為了對用戶最友好的生物識別方法。
這也意味著人臉識別的潛在應用范圍更廣,因為它也可被部署在用戶不期望與系統合作的環境中,比如監控系統中。人臉識別的其它常見應用還包括訪問控制、欺詐檢測、身份認證和社交媒體。
(2)什麼是面部識別擴展閱讀
最新的人臉識別技術,不僅能夠指示性別與估計年齡,還能夠辨別個人的面部表情。由於它屬於人工智慧與深度學習的范疇,隨著技術的進一步發展,經解讀與分析而得出關涉隱私的信息,可想而知會越來越多。多到足以為任何個人勾勒准確的用戶畫像。
人們對人臉識別技術的普遍接受,要麼是基於一廂情願的盲目樂觀,要麼是選擇性地無視或低估風險的結果。總而言之,就是在信息匱乏的情況下,做出了有失偏頗的判斷。這也正是人臉識別技術一直未成為公共話題的重要原因。
③ 人臉識別有什麼用途
人臉識別主要用於身份識別。由於視頻監控正在快速普及,眾多的視頻監控應用迫切需要一種遠距離、用戶非配合狀態下的快速身份識別技術,以求遠距離快速確認人員身份,實現智能預警。
人臉識別技術無疑是最佳的選擇,採用快速人臉檢測技術可以從監控視頻圖像中實時查找人臉,並與人臉資料庫進行實時比對,從而實現快速身份識別。
如今,人臉識別產品已廣泛應用於金融、司法、軍隊、公安、邊檢、政府、航天、電力、工廠、教育、醫療及眾多企事業單位等領域。隨著技術的進一步成熟和社會認同度的提高,人臉識別技術將應用在更多的領域。
(3)什麼是面部識別擴展閱讀:
發展歷史:
人臉識別系統的研究始於20世紀60年代,80年代後隨著計算機技術和光學成像技術的發展得到提高,而真正進入初級的應用階段則在90年後期,並且以美國、德國和日本的技術實現為主;
人臉識別系統成功的關鍵在於是否擁有尖端的核心演算法,並使識別結果具有實用化的識別率和識別速度;
「人臉識別系統」集成了人工智慧、機器識別、機器學習、模型理論、專家系統、視頻圖像處理等多種專業技術,同時需結合中間值處理的理論與實現,是生物特徵識別的最新應用,其核心技術的實現,展現了弱人工智慧向強人工智慧的轉化。
④ 人臉識別主要識別的是什麼
人臉識別是採集人臉的生物信息特徵,也就是我們所說的生物ID,將其存儲在資料庫中。在識別時,將人臉和資料庫中的生物ID進行比對、識別。
⑤ 什麼是人臉識別
所謂人臉識別就是根據每個人臉部的特徵來判斷不同的人的方法。
⑥ 人臉識別是什麼
人臉識別,是基於人的臉部特徵信息進行身份識別的一種生物識別技術。用攝像機或攝像頭採集含有人臉的圖像或視頻流,並自動在圖像中檢測和跟蹤人臉,進而對檢測到的人臉進行臉部識別的一系列相關技術,通常也叫做人像識別、面部識別。
人臉識別系統主要包括四個組成部分,分別為:人臉圖像採集及檢測、人臉圖像預處理、人臉圖像特徵提取以及匹配與識別。
(6)什麼是面部識別擴展閱讀:
好處:
1、安全
你還在擔心自己的身份信息被盜用嗎?人臉識別技術問世完全解決了這一問題,即使是別人拿到我們的個人信息也無法操作任何與自己的信息有關的事情,如果人臉識別不過關是無法操作的。這樣一來在個人信息方面就有了較高的保障,人們也就可以放心使用人臉識別帶來的便捷。
2、快速
人臉識別效率高於人工的3-5倍,現在很多超市都開通了人臉識別付款,只要自主掃描的產品就可以通過支付寶的人臉識別成功付款,這樣既節省了人力資源也大大提高了辦事效率。雖然現在在超市人工付款窗口要大於人臉識別窗口,但是在將來人臉識別一定會完全實現全面的應用。
⑦ 人臉識別到底是什麼
人臉識別,其實就是需要在所有機器認為是人臉的那部分數據中,區分這個人臉屬於誰,這是視覺模式識別的一個細分問題。
其實我們人每時每刻都在進行視覺模式識別,我們通過眼睛獲得視覺信息,這些信息經過大腦的處理被識別為有意義的概念。於是我們知道了放在我們面前的是水杯、書本,還是什麼別的東西。
我們也無時無刻不在進行人臉識別,我們每天生活中遇到無數的人,從中認出那些熟人,和他們打招呼,打交道,忽略其他的陌生人。甚至躲開那些我們欠了錢還暫時還不上的人。
然而這項看似簡單的任務,對機器來說卻並不那麼容易實現。
對計算機來講,一幅圖像信息,無論是靜態的圖片,還是動態視頻中的一幀,都是一個由眾多像素點組成的矩陣。比如一個1080p的數字圖像,是一個由1980*1080個像素點組成矩陣,每個像素點,如果是8bit的rgb格式,則是3個取值在0-255的數。
機器需要在這些數據中,找出某一部分數據代表了何種概念:哪一部分數據是水杯,哪一部分是書本,哪一部分是人臉,這是視覺模式識別中的粗分類問題。
完成人臉識別的工作,要經過幾個步驟。首先計算機需要在圖像或視頻中找到人臉的位置,這部分工作一般叫做人臉檢測。如前所述,這是一種粗分類,具體到人臉檢測中,實際上是二分類,計算機只需要判斷目標圖像是或者不是人臉。但由於並不能事先確定人臉的大小和位置,計算機需要以每個可能的人臉大小對全圖進行掃描,逐個判斷子窗口所截取的圖像是否為人臉。而每次掃描過程,子窗口移動的步長可能是幾個像素。
所以你可以大致想像下,作一張圖的人臉檢測,計算機需要作多少次二分類判斷。
人臉檢測步驟從一張圖中獲得人臉的位置和大小,並將該部分圖像送給後續步驟,包括:人臉部件點定位,人臉圖像的對齊和歸一化,人臉圖像質量選取,特徵提取,特徵比對。所有步驟完成後,才能得知該人臉的身份。
當然,我們也可以單獨使用人臉檢測功能來完成某些應用,比如當前大部分照相機,及手機攝像頭都有人臉檢測功能,可以自動獲得人臉位置,從而對圖片作一些自動調焦和優化。甚至對人臉做一些初步的判斷,比如性別、年齡,甚至顏值。
1v1人臉驗證與1vN人臉查找
主人公通過各種方式,矇混過層層身份驗證,成功進入某機要部門,這是電影中經常出現的情節。而這層層的身份驗證就經常包括人臉識別。在這種應用中,使用者往往需要提供自己的身份。
比如使用門卡,計算機可以通過門卡在後台中獲取門卡所有者的人臉樣本,將其與當前使用門卡人的人臉圖像進行對比,以確認當前使用門卡的人與門卡的所有者是否匹配,如此可以避免撿到你門卡的人輕松混入公司。
這是一種1v1的身份驗證,計算機對當前人臉和庫存人臉進行一次比對,是對其他驗證方式的一種輔助,從而提高身份驗證的可靠性。這種應用目前已經大量使用,比如敏感設施的准入,互聯網金融領域的遠程開戶及大額提取的身份驗證等。